许静 雷雨心 常梦丽 王欢欢 唐仕欢
摘要 脑病及心,心病及脑,脑心互损的病理机制成为当今研究的热点之一。脑缺血发生后通过“下丘脑-垂体-肾上腺”轴、瀑布级联反应以及交感神经与副交感神经的紊乱等影响心脏功能。心肌缺血后炎性细胞的浸润、心室重构等加重全身性炎症反应,造成星形胶质细胞、小胶质细胞的增生、炎症介质的分泌引起脑损伤。随着研究的不断深入,炎症反应被认为是脑与心损伤的重要环节之一。因此本文结合国内外相关文献,从炎症介质以及活血化瘀方作用机制进展进行总结,为中医脑心相关理论研究及“脑心同治”科学内涵的揭示提供参考。
关键词 脑心互损;活血化瘀方;炎症介质;作用机制
Research Progress on Inflammatory Factors of Brain-Heart Damage and the Mechanism of Huoxue Huayu Prescription
XU Jing, LEI Yuxin, CHANG Mengli, WANG Huanhuan, TANG Shihuan
(Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China)
Abstract The pathological mechanisms of encephalopathy involving heart, heart disease involving brain, and brain-heart damage have become the hotspots of current research. The occurrence of cerebral ischemia affects cardiac functions by the hypothalamic-pituitary-adrenal axis, cascade reaction, and disturbance of sympathetic and parasympathetic nerves. The infiltration of inflammatory cells and ventricular remodeling after myocardial ischemia aggravate the systemic inflammatory response, causing the proliferation of astrocytes and microglia and the secretion of inflammatory cytokines and thus resulting in brain damage. With the deepening of research, inflammatory response is considered to be an important link in brain and heart injury. Therefore, this paper summarized the research progress of inflammatory factors and the mechanism of Huoxue Huayu Prescription with reference to relevant literature in China and abroad, which provided reference for studying brain-heart theories and elucidating simultaneous treatment of brain and heart in traditional Chinese medicine.
Keywords Brain-heart damage; Huoxue Huayu Prescription; Inflammatory factors; Mechanisms
中图分类号:R256.2文献标识码:Adoi:10.3969/j.issn.1673-7202.2022.07.005
心腦血管疾病的死亡率位于我国人口死亡率的前3位,其中在心脑血管的各类疾病中,缺血性脑卒中与缺血性心脏病最为常见。在临床研究中,脑卒中后死亡的第2个主要原因是心血管系统并发症(例如心力衰竭、神经源性心肌病等)造成的心功能紊乱,心血管并发症的发生进一步加重了缺血性脑卒中的严重性以及神经功能的缺陷[1]。中医认为,“神明之体藏于脑,神明之用发于心”,元神在脑,识神在心,心脑息息相关。脑之神明伤,累及于心,心之神明伤,累及于脑[2]。因此,在治疗上,中医强调“脑心同治”。
炎症和免疫反应在缺血后损伤的发生发展中发挥着巨大的作用,而活血化瘀方如脑心通胶囊、丹红注射液等方剂不仅能够改善缺血后心肌或脑部损伤,还能够干预脑或心缺血后炎症介质表达。因此本文结合国内外相关文献,从炎症介质以及活血化瘀方作用机制研究进行总结,为中医脑心相关理论研究及“脑心同治”科学内涵的揭示提供参考。
1 炎症介质在缺血性心脑血管疾病中的研究
1.1 Toll样受体 Toll样受体(TLRs)作为模式识别受体的典型代表,可以识别微生物并对其作出反应,在免疫系统中起着重要作用。TLR2和TLR4是TLRs家族中的重要成员,与缺血后的心脑血管炎症损伤方面密切相关。作为模式识别受体,TLR4是TLRs家族中唯一能够同时与髓样分化因子88与β干扰素TIR结构域衔接蛋白(TRIF)结合的受体蛋白[3],TLR4既可通过Toll/ⅠL-1受体结构域(TIR)招募MyD88形成白细胞介素-1受体相关激酶(IRAK)复合物,进一步激活肿瘤坏死因子受体相关因子-6(TRAF6),TRAF6与E2泛素蛋白连接酶一起激活转化生长因子B活化酶Ⅰ(TAK1)及其结合蛋白1、2的复合体,这个复合体激活丝裂原活化蛋白激酶与核因子κB(NF-κB)通路,启动炎症介质的转录。TLR4也可通过TRIF激活TANK结合激酶,TBK1刺激产生干扰素调节因子3(IRF3)以及干扰素[4-5]。已有文献表明TLR4在缺血性脑卒中和心肌损伤引起的炎症反应发挥着重要的作用。TLR4在心脏重塑小鼠的非缺血损伤部位以及扩张性心肌病患者的心脏组织中显著升高[6],并且能够减小TLR4基因缺陷型小鼠的心脏梗死面积[7-9],在冠脉结扎小鼠模型中,TLR4参与调节缺血损伤后的心室重塑[10]。除此之外,还发现TLR4能够识别在心肌梗死时高表达的热休克蛋白(Heat Shock Protein,HSP)-60和-70,进一步引起下游的NF-κB激活并启动炎性因子的转录。TLR2主要表达于小胶质细胞、星形胶质细胞、神经元以及内皮细胞中,越来越多的证据表明TLR2在缺血以及再灌注后表达上调进而加重脑损伤。在MCAO模型(Middle Cerebral Artery Occlusion)中,TLR2缺陷型小鼠的脑梗死面积要小于野生型小鼠,细胞的糖氧剥夺模型中抑制TLR2-IL-23-IL-17轴减缓了神经元的凋亡[11]。TLR2缺陷型小鼠在第4周时左心室重构较少,在第1和第4周时左心室功能得到改善,并且在第4周时存活率显著更高[12]。在中枢神经系统中,TLR2和TLR4通过与内源性配体结合,例如HSP、高迁移率蛋白在缺血性脑卒中以及缺血后再灌注引起的炎症反应中发挥关键作用[13-15]。HSP60以及HSP70是TLR4和TLR2的重要内源性配体,在心肌缺血或脑缺血后其表达上调,并与TLR4和TLR2结合会激活MyD88-IRAK-NF-κB,启动炎性因子的转录[16-17]。
1.2 白细胞介素-1β(IL-1β) 白细胞介素-1(IL-1)通过诱导内皮细胞和基质细胞表达黏附分子、趋化因子等细胞因子来促进炎症部位炎症细胞的募集。细胞因子刺激产生磷脂酶A2、环加氧酶2和诱导型一氧化氮合酶,导致炎症介质前列腺素E2和NO(Nitric Oxide)的释放促进局部和全身反应[18]。IL-1β通常以无活性的前体形式在胞质溶胶中转录和翻译,当受到TLRs或其他细胞因子的刺激,其表达显著升高[19]。已有文献表明,IL-1β在急性心肌梗死亚急性期和慢性期诱导心肌细胞凋亡[20],并且在动脉粥样硬化发病中发挥关键作用[21]。心肌梗死发生后,IL-1β的释放引起内皮细胞表面黏附分子的表达,所述黏附分子与募集的白细胞结合外渗到损伤区域[22]。IL-1β还能够增加趋化因子的表达,如单核细胞趋化蛋白-1。IL-1β在中枢神经系统中具有重要功能,大脑中的许多细胞类型表达它们的同源受体,这些受体可能导致神经元损伤和细胞死亡的炎症级联反应[23]。它在中枢神经系统中参与认知、学习和记忆过程,在中枢神经系统中具有重要功能[24]。已有研究表明IL-1β在中枢神经系统感染、脑损傷和神经退行性疾病中表达水平升高[25-26]。神经炎症在中风中起着至关重要的病理作用,IL-1β已被确定为中风病理中的关键细胞因子。在MCAO模型中,IL-1β在大鼠和小鼠的脑组织中表达水平显著增加[27-28],在IL-1α和IL-1β缺陷型小鼠在短暂性MCAO模型中表现出显著减少的缺血性梗死体积[29]。
1.3 肿瘤坏死因子-α(TNF-α) TNF-α是一种由巨噬细胞/单核细胞在炎症期间产生的促炎细胞因子,在炎症、细胞增殖、分化以及凋亡的过程中发挥作用[30]。心力衰竭、不稳定性心绞痛、中风、脑损伤等疾病均会产生TNF-a[31]。TNF-α还可能通过影响脂质代谢、激活内皮细胞和诱导血管炎症而参与动脉粥样硬化的发病机制。心肌梗死后会释放TNF-α并且可以促进炎性损伤,诱导梗死心肌中趋化因子和黏附分子的合成。作为一种高度多效性的介质,TNF-α也能保护心肌细胞免于凋亡。有研究表明TNF-α在左冠状动脉结扎小鼠心脏中表达水平升高,TNF-α抑制剂干预后减少了小鼠炎症细胞因子的水平和梗死区域内和周围的炎症细胞浸润[32],急性脑缺血后诱导的外周细胞因子释放可能导致脑内皮渗漏,从而诱导神经炎症反应[33]。在MCAO模型中,脑组织中TNF-α的表达水平显著升高[34]。
2 活血化瘀方对缺血性心脑血管疾病的干预作用
心、脑血管疾病虽然在临床表现各不相同,但是气虚血瘀证是缺血性脑卒中与冠心病的基本证候,活血化瘀为主要治法之一。中医认为,心与脑生理病理密切相关,基于中医整体观念和辨证论治,在临床上,强调“脑心同治”。临床研究表明活血化瘀方的现代代表方剂如丹红注射液和脑心通胶囊对于缺血性脑卒中、冠心病和急性冠脉综合征患者疗效显著,还能够降低炎症介质如IL-1β、TNF-α等炎症介质的表达。下面对活血化瘀方在心和脑缺血性疾病中的作用机制研究进展进行总结,为“脑心同治”科学内涵的揭示提供参考。
2.1 脑心通胶囊 脑心通胶囊源自经典名方“补阳还五汤”,是益气活血的代表性方剂。脑心通胶囊由黄芪、桃仁、红花、乳香、丹参、地龙、全蝎等十六味中药组成,具有益气活血、化瘀通络之效,在临床上对于缺血性脑卒中和冠心病具有显著疗效[35]。Wang等[36]发现脑心通通过COX2-VEGF/NF-κB信号通路修复缺血损伤和抑制血栓形成,Wang等[37]发现脑心通胶囊能够改善APP/PS1(Amyloid Precursor Protein,APP;Presenilin 1,PS1)小鼠空间记忆障碍和认知能力下降,并能够降低IL-1β、白细胞介素-6(Interleukin-6,IL-6)以及TNF-α表达。Cheng等[38]发现脑心通胶囊通过雌激素受体激活Nrf2/HO-1信号通路抑制p38α信号通路改善绝经后高血压雌性小鼠心脏重构,并通过ERK5(Extracellular Signal-regulated Kinase 5)通路抑制血小板活化来限制心肌梗死扩大[39]。谢丽荣等[40]研究表明脑心通方对左冠状动脉主干支结扎大鼠心脏和大脑皮质中的干扰素α(Interferon Alpha,IFN-α)、IRF3、TLR2、TLR7、TLR9和TNF-α的表达都有显著的抑制作用。
2.2 丹红注射液 丹红注射液是由丹参与红花配伍成的注射剂,具有活血化瘀功效,已有研究表明丹红注射液具有减轻炎症损伤的作用[41-42],能够降低脂多糖(Lipopolysaccharide,LPS)处理后小鼠血清中的20多种细胞因子的表达[43]。有研究通过对246例急性脑梗死患者进行观察发现丹红注射液能够改善血流动力学指标如高剪切黏度、低剪切黏度、血浆黏度、红细胞比容、血小板聚集率等,并降低患者外周血中炎症介质IL-6、TNF-α、IL-1β的mRNA和蛋白表达水平[44]。Chen等[45]对丹红注射液治疗急性冠脉综合征(Acute Coronary Syndromes,ACS)患者后血小板活化和炎症介质的影响进行分析,发现丹红注射液可以抑制ACS患者PCI(Percutaneous Coronary Intervention)术后血小板活化和炎症反应。Lyu Ming等[46]利用网络药理学揭示丹红注射液在治疗脑卒中及冠心病的潜在的共同机制为炎症反应,并通过实验验证丹红注射液对LPS、氧化低密度脂蛋白或胆固醇结晶诱导的NF-κB、c-Jun氨基端激酶和丝裂原活化蛋白激酶11活化,以及血管内皮细胞中IL-1β、TNF-α和IL-10分泌发挥了全面的抗炎作用。Orgah等[47]发现丹红注射液通过β-肾上腺素能通路改善了由脑部缺血/再灌注引起的大鼠动脉血压、心电图和心率的显著改变。因此,炎症可能为丹红注射液治疗脑卒中及冠心病的潜在的共同机制,能够降低急性脑梗死患者炎性因子表达水平,并通过β-肾上腺素能通路改善了由脑部缺血/再灌注引起的大鼠心脏异常。
3 小結
脑病及心,心病及脑,心、脑血管疾病虽然在临床表现各不相同,但是随着疾病发生发展,炎症被认为是脑心互损的关键病理环节之一,其中炎症介质如IL-1β、TNF-α等炎症介质在其中扮演重要角色。TLR2/4属于模式识别受体,它们不仅在中枢神经系统中,TLR2和TLR4通过与内源性配体结合在缺血性脑卒中以及缺血后再灌注引起的炎症反应中发挥关键作用,TLR4在心肌缺血后进一步引起下游的NF-κB激活并启动炎性因子的转录。TLRs受体进一步会刺激IL-1β表达。TNF-α作为一种多效炎症介质,在MCAO以及急性冠脉结扎模型中显著升高。但是目前对于炎症反应的研究更多地关注于心肌缺血或者缺血性脑卒中这一单一疾病,对于炎症介质以及炎症反应在脑心互损过程中的分子机制仍值得广大科研工作者进行研究。辨证论治是中医诊疗的特色和精髓,异病同治是其重要内容。因此,“脑心同治”的治疗理念源于中医临床实践,是中医异病同治的具体体现。活血化瘀中药现代代表性方剂如脑心通胶囊和丹红注射液等能够降低缺血后IL-1β、TNF-α等炎症介质的表达水平,并减轻心或脑缺血后的损伤程度。目前已有研究报道丹红注射液治疗脑卒中及冠心病的潜在的共同机制为炎症反应,脑心通方能够降低心肌缺血后大鼠心脏和大脑皮质中的TLR2、TNF-α等的表达,但是对于其在干预脑心互损过程中炎症反应的复杂作用机制、关键药效物质仍有待研究。随着“脑心互损”病理机制研究的不断深入,相信可以从现代科学的角度揭示“脑心同治”科学内涵,指导临床用药。
参考文献
[1]Peyvandi S,Latal B,Miller SP,et al.The neonatal brain in critical congenital heart disease: Insights and future directions[J].Neuroimage,2019,185:776-782.
[2]刘卫红,周明学,李思耐,等.脑心同治理论对临床的指导意义[J].世界中医药,2017,12(2):10-11.
[3]Arslan F,Keogh B,McGuirk P,et al.TLR2 and TLR4 in ischemia reperfusion injury[J].Mediators Inflamm,2010,2010:704202.
[4]Gesuete R,Kohama SG,Stenzel-Poore MP.Toll-like receptors and ischemic brain injury[J].J Neuropathol Exp Neurol,2014,73(5):378-386.
[5]Piccinini AM,Midwood KS.DAMPening inflammation by modulating TLR signalling[J].Mediators Inflamm,2010,2010:672395.
[6]Frantz S,Kobzik L,Kim YD,et al.Toll4(TLR4) expression in cardiac myocytes in normal and failing myocardium[J].J Clin Invest,1999,104(3):271-280.
[7]Chong AJ,Shimamoto A,Hampton CR,et al.Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart[J].J Thorac Cardiovasc Surg,2004,128(2):170-179.
[8]Kim SC,Ghanem A,Stapel H,et al.Toll-like receptor 4 deficiency: smaller infarcts,but no gain in function[J].BMC Physiol,2007,7:5.
[9]Oyama J,Blais C Jr,Liu X,et al.Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice[J].Circulation,2004,109(6):784-789.
[10]Riad A,Jger S,Sobirey M,et al.Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice[J].J Immunol,2008,180(10):6954-6961.
[11]Arumugam TV,Okun E,Tang SC,et al.Toll-like receptors in ischemia-reperfusion injury[J].Shock,2009,32(1):4-16.
[12]Asea A,Rehli M,Kabingu E,et al.Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor(TLR) 2 and TLR4[J].J Biol Chem,2002,277(17):15028-15034.
[13]Yang QW,Li JC,Lu FL,et al.Upregulated expression of toll-like receptor 4 in monocytes correlates with severity of acute cerebral infarction[J].J Cereb Blood Flow Metab,2008,28(9):1588-1596.
[14]Yang QW,Lu FL,Zhou Y,et al.HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling[J].J Cereb Blood Flow Metab,2011,31(2):593-605.
[15]Marsh BJ,Williams-Karnesky RL,Stenzel-Poore MP.Toll-like receptor signaling in endogenous neuroprotection and stroke[J].Neuroscience,2009,158(3):1007-1020.
[16]Vabulas RM,Ahmad-Nejad P,da Costa C,et al.Endocytosed HSP60s use toll-like receptor 2(TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells[J].J Biol Chem,2001,276(33):31332-31339.
[17]Zou N,Ao L,Cleveland JC Jr,et al.Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion[J].Am J Physiol Heart Circ Physiol,2008,294(6):H2805-H2813.
[18]Gabay C,Lamacchia C,Palmer G.IL-1 pathways in inflammation and human diseases[J].Nat Rev Rheumatol,2010,6(4):232-241.
[19]Toldo S,Mauro AG,Cutter Z,et al.Inflammasome,pyroptosis,and cytokines in myocardial ischemia-reperfusion injury[J].Am J Physiol Heart Circ Physiol,2018,315(6):H1553-H1568.
[20]Toldo S,Mezzaroma E,Van Tassell BW,et al.Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse[J].Exp Physiol,2013,98(3):734-745.
[21]Ridker PM,Everett BM,Thuren T,et al.Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease[J].N Engl J Med,2017,377(12):1119-1131.
[22]Frangogiannis NG,Smith CW,Entman ML.The inflammatory response in myocardial infarction[J].Cardiovasc Res,2002,53(1):31-47.
[23]Voet S,Srinivasan S,Lamkanfi M,et al.Inflammasomes in neuroinflammatory and neurodegenerative diseases[J].EMBO Mol Med,2019,11(6):e10248.
[24]Allan SM,Tyrrell PJ,Rothwell NJ.Interleukin-1 and neuronal injury[J].Nat Rev Immunol,2005,5(8):629-640.
[25]Heneka MT,Kummer MP,Latz E.Innate immune activation in neurodegenerative disease[J].Nat Rev Immunol,2014,14(7):463-77.
[26] Heneka MT,McManus RM,Latz E(2018) Inflammasome signalling in brain function and neurodegenerative disease[J].Nat Rev Neurosci,2018,19(10):610-621.
[27]Yu J,Wang WN,Matei N,et al.Ezetimibe Attenuates Oxidative Stress and Neuroinflammation via the AMPK/Nrf2/TXNIP Pathway after MCAO in Rats[J].Oxid Med Cell Longev,2020,2020:4717258.
[28]Ran Y,Su W,Gao F,et al.Curcumin Ameliorates White Matter Injury after Ischemic Stroke by Inhibiting Microglia/Macrophage Pyroptosis through NF-κB Suppression and NLRP3 Inflammasome Inhibition[J].Oxid Med Cell Longev,2021,2021:1552127.
[29]Boutin H,LeFeuvre RA,Horai R,et al.Role of IL-1alpha and IL-1beta in ischemic brain damage[J].J Neurosci,2001,21(15):5528-5534.
[30]Zelová H,Hoek J.TNF-α signalling and inflammation: interactions between old acquaintances[J].Inflamm Res,2013,62(7):641-651.
[31]Cairns CB,Panacek EA,Harken AH,et al.Bench to bedside: tumor necrosis factor-alpha: from inflammation to resuscitation[J].Acad Emerg Med,2000,7(8):930-941.
[32]Wang X,Guo Z,Ding Z,et al.Inflammation,Autophagy,and Apoptosis After Myocardial Infarction[J].J Am Heart Assoc,2018,7(9):e008024.
[33]Liu H,Luiten PG,Eisel UL,et al.Depression after myocardial infarction: TNF-α-induced alterations of the blood-brain barrier and its putative therapeutic implications[J].Neurosci Biobehav Rev,2013,37(4):561-572.
[34]Huang L,Ma Q,Li Y,et al.Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice[J].Exp Neurol,2018,300:41-50.
[35]Han J,Tan H,Duan Y,et al.The cardioprotective properties and the involved mechanisms of NaoXinTong Capsule[J].Pharmacol Res,2019,141:409-417.
[36]Wang Z,Liu P,Hu M,et al.Naoxintong restores ischemia injury and inhibits thrombosis via COX2-VEGF/NF-κB signaling[J].J Ethnopharmacol,2021,270:113809.
[37]Wang X,Yin Z,Cao P,et al.NaoXinTong Capsule ameliorates memory deficit in APP/PS1 mice by regulating inflammatory cytokines[J].Biomed Pharmacother,2021,133:110964.
[38]Cheng L,Maboh RN,Wang H,et al.Naoxintong capsule activates the Nrf2/HO-1 signaling pathway and suppresses the p38α signaling pathway via estrogen receptors to ameliorate heart remodeling in female mice with postmenopausal hypertension[J].J Cardiovasc Pharmacol,2022,29:35500215.
[39]Zhang L,Chen L,You X,et al.Naoxintong capsule limits myocardial infarct expansion by inhibiting platelet activation through the ERK5 pathway[J].Phytomedicine,2022,98:153953.
[40]謝丽荣,李倩楠,姜婷月,等.基于心肌缺血状态的脑心通方对于心、脑组织Toll样受体相关通路蛋白的影响[J].中华中医药杂志,2021,36(4):1901-1906.
[41]Jiang X,Lv B,Li P,et al.Bioactivity-integrated UPLC/Q-TOF-MS of Danhong injection to identify NF-κB inhibitors and anti-inflammatory targets based on endothelial cell culture and network pharmacology[J].J Ethnopharmacol,2015,174:270-276.
[42]Li S,Duan S,Ning Y,et al.Efficacy and safety of Danhong injection on endothelial function and inflammatory factors after the percutaneous coronary intervention for coronary heart disease: A protocol of systematic review and meta-analysis of randomized controlled trials[J].Medicine(Baltimore),2020,99(27):e20783.
[43]Gao LN,Cui YL,Wang QS,et al.Amelioration of Danhong injection on the lipopolysaccharide-stimulated systemic acute inflammatory reaction via multi-target strategy[J].J Ethnopharmacol,2013,149(3):772-782.
[44]Jiang Y,Lian YJ.Effects of Danhong injection on hemodynamics and the inflammation-related NF-κB signaling pathway in patients with acute cerebral infarction[J].Genet Mol Res,2015,14(4):16929-16937.
[45]Chen ZQ,Hong L,Wang H.Effect of danhong injection on platelet activation and inflammatory factors in patients of acute coronary syndrome after intervention therapy[J].Chin J Integr Tradit West Med(Chin),2009,29(8):692-694.
[46]Lyu M,Yan CL,Liu HX,et al.Network pharmacology exploration reveals endothelial inflammation as a common mechanism for stroke and coronary artery disease treatment of Danhong injection[J].Sci Rep,2017,7(1):15427.
[47]Orgah JO,Yu J,Zhao T,et al.Danhong Injection Reversed Cardiac Abnormality in Brain-Heart Syndrome via Local and Remote β-Adrenergic Receptor Signaling[J].Front Pharmacol,2018,9:692.
(2022-03-10收稿 本文編辑:王明)