王其淼
考题再现
例1 (2020·江苏·扬州)如图1,已知点O在四边形ABCD的边AB上,且OA = OB = OC = OD = 2,OC平分∠BOD,与BD交于点G,AC分别与BD,OD交于点E,F.
(1)求证:OC[?]AD;
(2)如图2,若DE = DF,求[AEAF]的值;
(3)当四边形ABCD的周长取最大值时,求[DEDF]的值.
考点剖析
1.知识点:本题是四边形综合题,考查了全等三角形的判定与性质、角平分线的性质、等腰三角形的性质、等腰直角三角形的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、勾股定理、直角三角形的性质等知识,熟练运用这些图形的性质是解题的关键.
2.数学方法:构造法.
学情分析
解题思路:(1)由等腰三角形的性质及角平分线的定义证得∠ADO = ∠DOC,则可得出结论;
(2)如图3,过点E作EM[?]FD交AD的延长线于点M,证得∠M = ∠ADF = 45°,由直角三角形的性质得出EM = [2]DE = [2]DF,由△AME ∽ △ADF,得出[AEAF] = [EMFD] = [2];
(3)设BC = CD = x,CG = m,则OG = 2 - m,由勾股定理得出4 - (2 - m)2 = x2 - m2,解得m = [14]x2,可用x表示四边形ABCD的周长,根据二次函数的性质可求出x = 2时,四边形ABCD有最大值,得出∠ADF = ∠DOC = 60°,∠DAE = 30°,由直角三角形的性质可得出答案.
解:(1)∵AO = OD,∴∠OAD = ∠ADO.
∵OC平分∠BOD,∴∠DOC = ∠COB.
又∵∠DOC + ∠COB = ∠OAD + ∠ADO,
∴∠ADO = ∠DOC,∴OC[?]AD.
(2)如图3,过点E作EM[?]FD交AD的延长线于点M,
设∠DAC = α,∵CO[?]AD,∴∠ACO = ∠DAC = α,
∵AO = OC,∴∠OAC = ∠OCA = α.
∵OA = OD,∴∠ODA = ∠OAD = 2α.
∵DE = DF,∴∠DFE = ∠DEF = 3α.
∵AO = OB = OD,∴∠ADB = 90°,
∴∠DAE + ∠AED = 90°,即4α = 90°,
∴∠ADF = 2α = 45°,∴∠FDE = 45°,
∴∠M = ∠ADF = 45°,∴EM = [2]DE = [2]DF.
∵DF[?]EM,∴△AME ∽ △ADF,
∴[AEAF] = [EMFD] = [2].
(3)∵OD = OB,∠BOC = ∠DOC,OC = OC,
∴△BOC≌△DOC(SAS),∴BC = CD.
设BC = CD = x,CG = m,则OG = 2 - m,
∵OB2 - OG2 = BC2 - CG2,
∴4 - (2 - m)2 = x2 - m2,
解得m = [14]x2,∴OG = 2 - [14]x2,
∵OD = OB,∠DOG = ∠BOG,∴G为BD的中点.
又∵O为AB的中点,∴AD = 2OG = 4 - [12]x2,
∴四边形ABCD的周长为BC + CD + AD + AB = 2x + 4 - [12]x2 + 4 = - [12]x2 + 2x + 8 = - [12](x - 2)2 + 10,
∵- [12] < 0,∴x = 2时,四边形ABCD的周长有最大值10,∴BC = 2,
∴△BCO为等边三角形,∴∠BOC = 60°,
∵OC[?]AD,∴∠DAB = ∠COB = 60°,
∴∠ADF = ∠DOC = 60°,∠DAE = 30°,
∴∠AFD = 90°,∴[DEDA] = [33],DF = [12]DA,
∴[DEDF] = [233].
拓展变形
例2 (2020·山东·德州)问题探究:小红遇到这样一个问题:如图4,△ABC中,AB = 6,AC = 4,AD是中线,求AD的取值范围. 她的做法是:延长AD到E,使DE = AD,连接BE,证明△BED ≌ △CAD,经过推理和计算使问题得到解决.
请回答:
(1)小红证明△BED ≌ △CAD的判定定理是:.
(2)AD的取值范围是.
方法运用:
(3)如图5,AD是△ABC的中线,在AD上取一点F,连接BF并延长交AC于点E,使AE = EF,求证:BF = AC.
(4)如图6,在矩形ABCD中,[ABBC] = [12],在BD上取一点F,以BF为斜边作Rt△BEF,且[EFBE] = [12],点G是DF的中点,连接EG,CG,求证:EG = CG.
(作者单位:辽宁省大连市第九中学)