■廖庆伟
平面向量的模的最值问题是向量问题的一个难点,也是高考的一个常考点。这类问题的求解策略主要有:二次函数性质法,三角函数性质法,判别式法,向量不等式法,几何图形性质法等。下面举例分析。
评注:把所求的模表示成某个变量的三角函数,再利用三角函数的性质求最值。
例3 已知平面向量a,b满足|a|=1,|b|=2,|a-b|= 7,若对于任意实数k,不等式|ka+tb|>1恒成立,则实数t的取值范围是_____。
评注:弄清所求的模表示的几何意义,结合动点表示的图形求解。
中学生数理化·高一版2022年3期
1《合作经济与科技》2024年13期
2《婚育与健康》2024年10期
3《思维与智慧·上半月》2024年7期
4《陶瓷科学与艺术》2023年11期
5《中国商人》2024年7期
6《教师博览》2024年4期
7《师道·教研》2024年6期
8《中国对外贸易》2024年6期
9《伴侣》2024年6期
10《经济技术协作信息》2024年6期