基于可见/近红外光谱的菠萝水心病无损检测

2022-01-27 02:24陆华忠丘广俊
农业工程学报 2021年21期
关键词:心病菠萝正确率

徐 赛,陆华忠,王 旭,丘广俊,王 陈,梁 鑫

基于可见/近红外光谱的菠萝水心病无损检测

徐 赛1,陆华忠2※,王 旭1,丘广俊1,王 陈1,梁 鑫1

(1. 广东省农业科学院农业质量标准与监测技术研究所,广州 510640; 2. 广东省农业科学院,广州 510640)

水心病近年严重危害菠萝产业,探究一种菠萝水心病的无损检测方法对保证上市果品、指导采后处理、促进产业提升具有重要意义。该研究采用自行搭建的菠萝可见/近红外光谱无损智能检测平台,考虑实际应用成本与效果,搭载覆盖不同波段(400~1 100、900~1 700和400~1 700 nm)的检测器对菠萝样本进行采样,随后人工标定水心病发生程度。研究结果表明,3种不同光谱波段对菠萝水心程度检测的较优方法均为:采用全波段进行多项式平滑(Savitzky Golay,SG)处理,再进行标准正态变量校正(Standard Normal Variate,SNV),最后结合概率神经网络(Probabilistic Neural Network,PNN)建模识别。其中,400~1 100 nm所建模型对菠萝水心病训练集的回判正确率为98.51%,对验证集的检测正确率为91.18%;900~1 700 nm所建模型对菠萝水心病训练集的回判正确率为100%,对验证集的检测正确率为62%;400~ 1 700 nm所建模型对菠萝水心病训练集的回判正确率为100%,对验证集的检测正确率为91.18%。主成分分析(Principal Component Analysis,PCA)和偏最小二乘回归(Partial Least Squares Regression,PLSR)分析结果均显示,采用400~ 1 700 nm能轻微提升400~1 100 nm的检测效果。综合考虑实际应用成本与效果,实际应用建议采用400~1 100 nm光谱结合SG + SNV + PNN对菠萝水心病进行识别。研究结果证明可见/近红外光谱技术可为菠萝水心病无损、快速、智能检测提供有效的解决方案,为相关领域提供参考。

无损检测;模型;菠萝;水心病;可见/近红外光谱

0 引 言

水心病是菠萝的生理性病害,过去时有发生,受关注较少,但近年中国菠萝水心病发生逐年加重,成为产业的新问题[1]。发生水心病的菠萝果肉呈腐烂、水浸状,由于果肉细胞间隙充满液体,这种果实不耐存放,并且会迅速散发出酒糟味和恶臭味,严重影响口感和风味,失去商品价值[2]。研究团队2019-2021年对中国菠萝主产区广东徐闻菠萝笔者调查的水心病发生率分别为15%、24%和44%,呈逐年递增的趋势,需引起相关领域重视。

田间水果品质的形成通常受阳光[3]、降雨[4]、气温[5]、营养[6]等诸多因素的影响,加上中国菠萝以散户种植为主,种植标准不统一,短期内想要根治水心病难度较大。因此,亟需一种无损、快速、有效的方法对水心菠萝果实进行检测与分级,指导采后处理、保障市场品质、保护品牌形象。据调研,目前产业普遍采用人工敲击辩声的方法识别,水心菠萝果通常声音较沉闷,但正确率只有约60%,且存在成本高、劳动强度大、检测效率低。可见,开发一种无损、智能、快速菠萝水心病检测方法意义重大。

目前,可见/近红外光谱[7]、电子鼻[8]和机器视觉[9]技术在农产品品质无损智能检测中均发挥着重要作用。菠萝水心病发生是从内部靠近果心的果眼位置开始,再逐渐向外蔓延。电子鼻和机器视觉技术在无损检测过程中更侧重于靠近农产品外表的特征,而可见/近红外光可穿透农产品,获取内部品质特征信息,更加适合于菠萝水心病的无损智能检测。前期研究表明,可见/近红外光谱在小型薄皮水果的内部糖度[10-11]、酸度[12-13]、硬度[14-15]、病虫害[16-19]等内部品质无损检测上是可行的,但菠萝属于大型水果,且表面不光滑,容易引起散射噪声,检测难度相对较大[20]。采用可见/近红外光谱技术能否有效无损检测菠萝水心病,尚未见有关报道。

为此,本研究基于可见/近红外光谱技术自行搭建了一套菠萝水心病无损智能检测平台,考虑实际应用成本与效果,基于平台搭载覆盖不同波段的检测器对菠萝样本进行无损采样,随后切开检测水心发生情况,建立菠萝可见/近红外光谱特征对水心病的无损检测模型,为菠萝产业开发水心病无损、快速、智能检测方法提供科学参考。

1 材料与方法

1.1 光谱检测平台搭建

自行搭建的菠萝品质无损检测实验平台如图1所示。采样时将菠萝水平放置在载物台的托盘上(托盘可固定菠萝姿态,亦可使试验结果更好地为流水线动态检测提供参考)。为防止光线未经过菠萝直接被光纤接收造成噪声干扰,光源发射的光需经过进光孔,透射过样本后,经过出光孔方可被接收。测试过程在暗箱内进行,箱体窗口用窗帘遮光。为寻找较优的菠萝光谱采样参数,平台以下参数活动可调:光源0~900 W可调由9盏100 W的卤素灯组成,LM-100型号,日本MORITEX公司,平均寿命为1 000 h),隔光板上进光孔与出光孔的大小经过多次更换、测试确定,光源、菠萝样本和接收光纤之间的距离可通过滑台调节。

接收光纤另一端连接两台覆盖不同波段的光谱仪,分别是QE pro和NIR QUESR(均为美国Ocean Optics公司生产),可覆盖波段400~1 100和900~1 700 nm,若采用两台光谱仪联用的方式可覆盖400~1 700 nm的光谱信息。

1.光源 2.暗箱体 3.光源开关 4.隔光板 5.托盘 6.载物台 7.遮光窗帘 8.光谱光纤 9.滑台 10.出光孔 11.进光孔 12.菠萝样本

1.2 菠萝样本

本试验采用的菠萝果实2021年4月采摘于广东省湛江市徐闻县某农场,品种为“巴厘”,共100个样本,采果后立即在农场附件搭建的实验房内进行采样与测试。

1.3 菠萝样本信息采集

经过调试,菠萝可见/近红外光谱的较优采集参数设置为:光谱仪QE pro与NIR QUEST的积分时间分别为 600 ms与2 000 ms;接收光纤距离菠萝托盘距离30 mm;菠萝托盘进光孔位置距离光源84 mm;光源为500 W;菠萝托盘位于托盘的中心位置,光源、进光孔、菠萝、出光孔、接收光纤处于同一水平。

采集菠萝光谱信息后,立即进行水心病人工评判。目前尚未见菠萝水心病评级方法,团队前期研究提出[21]:将菠萝纵切两半,再平均切分成12小片平铺在桌面上,较全面地观察并记录菠萝水心病发生情况。无水心病表示无水心病发生,水心面积占总面积的0%;轻微水心病表示呈轻微水菠萝迹象,仍可食用,具有一定商品价值,水心面积小于或等于总面积的10%;严重水心病表示果实水心病严重发生,无法食用,失去商品价值,水心面积大于总面积的10%。共采集到无水心病、轻微水心病、严重水心病样本分别为56、21和23个。

1.4 数据处理与分析

采用主成分分析(Principal Component Analysis,PCA)[22]判别不同水心程度菠萝的分类效果,由第一和第二主成分(The first and second principal component,PC1 and PC2)构成的样本散点图表示;采用多项式平滑(Savitzky Golay,SG)[23]滤波减少大型水果光谱采样因光程较长、信噪比较低带来的噪声波动,滤波效果受多项式阶次与平滑点数的影响;随后采用标准正态变量校正(Standard Normal Variate,SNV)[24]降低菠萝表皮极其粗糙等带来的散射噪声;SG + SNV预处理后,采用连续投影算法(Successive Projections Algorithm, SPA)[25]+ PCA + 欧氏距离(Euclidean Distance,ED)[26]进行光谱特征提取,其中SPA根据差异大小进行光谱特征的排序,特征数量从2到最大逐渐增加,分别进行PCA处理,采用ED计算不同类别中心点之间的距离,以距离的大小判断增加特征的必要性;最后,对预处理与特征提取后的光谱数据,采用偏最小二乘回归(Partial Least Squares Regression,PLSR)[27]与概率神经网络(Probabilistic Neural Network,PNN)[28]分训练集与校正集进行进一步建模判别,无、轻度和重度水心病分别随机选择38、14和15个样本作为训练集,其余19、7和8个样本作为验证集,不同水心程度由小到大期望输出均分别设定为1、2和3,其中PLSR的检测效果受降维后特征个数的选取影响较大,结果输出为小数,通常用预测值与实际值之间的决定系数2,以及均方根误差(Root Mean Square Error, RMSE)表示,PNN的检测效果受扩散速度Spread值影响较大,其结果输出为整数,可直接用正确率表达。为进一步统计PLSR的识别正确率,将PLSR结果输出进行四舍五入取整,小于等于1的结果输出为无水心,等于2为轻微水心,大于等于3为重度水心。

2 结果与分析

2.1 不同波段光谱对菠萝水心病检测

2.1.1 原始数据+PCA判别

菠萝样本在400~1 100 nm的原始光谱如图2a所示,数据在1 000 nm以后出现轻微的噪声波动。400~1 100 nm原始数据对菠萝水心程度的PCA判别结果如图2b所示。不同水心程度菠萝样本可以被区分开来,但距离较近,且离散程度较高,聚类性较差。

菠萝样本在900~1 700 nm的原始光谱如图3a所示,数据均存在明显的噪声波动,且随波长增加而增大。900~1 700 nm原始数据对菠萝水心程度的PCA判别结果如图3b所示。不同水心程度菠萝样本无法被区分开来。

菠萝样本在400~1 700 nm的原始光谱如图4a所示,数据在1 000 nm以后噪声波动逐渐增强。400~1 700 nm原始数据对菠萝水心程度的PCA判别结果如图4b所示。第一主成分(PC1)与第二主成分(PC2)的贡献率分别为60.77和32.59%,总贡献率为93.36%。与400~1 100 nm光谱分类结果图相似(图2b),不同水心程度菠萝样本可以被区分开来,但距离较近,离散程度较高,聚类性较差。

2.1.2 SG滤波+SNV校正+PCA判别

为提高光谱数据质量,经试验,采用3阶23点SG处理可较好地滤除400~1 100 nm光谱数据中存在的噪声波动,随后采用SNV对光谱信号中的散射噪声进行校正,得到处理后的菠萝光谱信号如图5a所示。基于处理后的光谱信号对菠萝水心程度进行PCA判别的结果如图5b所示。对比图2b,PCA同样可以有效区分不同水心程度,且同类样本数据点的聚类性明显增强,但不同样本之间存在少量数据点重叠,实际分类中有误判的风险。

为提高光谱数据质量从而提升检测效果,经反复试验,采用3阶41点SG处理可较好地滤除900~1 700 nm光谱数据中存在的噪声波动,随后采用SNV对光谱信号中的散射噪声进行校正,得到处理后的菠萝光谱信号如图6a所示。基于处理后的光谱信号对菠萝水心程度进行PCA判别的结果如图6b所示。PCA无法有效区分不同水心程度,但对比图3b,样本数据点的聚类性明显增强。

为保障整体光谱曲线的衔接性与降噪效果,采用3阶41点SG处理并滤除400~1 700 nm光谱数据中存在的噪声波动,随后采用SNV对光谱信号中的散射噪声进行校正,得到处理后的菠萝光谱信号如图7a所示。处理后的光谱信号对菠萝水心程度进行PCA判别的结果如图7b所示。PCA同样可以有效区分不同水心程度,对比图4b,重叠的数据点个数略有减少,但聚类性略有降低,部分样本实际分类中仍有误判的风险。

2.1.3 SPA+PCA+ED特征提取

为明确是否每一个特征对分类识别均有积极作用,采用SPA + PCA + ED对400~1 100 nm光谱特征作用的分析结果如图8a所示。采用SPA将特征作用从大到小进行排序后,按顺序逐渐增加特征数量并进行PCA分析,不同水心程度数据点之间的ED逐渐增加。可见,400~ 1 100 nm所有的特征在分类识别过程中均是有益的。

采用SPA + PCA + ED对900~1 700 nm光谱特征作用的分析结果如图8b所示。采用SPA将特征作用从大 到小进行排序后,按顺序逐渐增加特征数量并进行PCA分析,不同水心程度数据点之间的欧式距离ED逐渐增加。可见,900~1700 nm所有的特征在分类识别过程中均是有益的。

采用SPA + PCA + ED对400~1700 nm光谱特征作用的分析结果如图8c所示。采用SPA将特征作用从大到小进行排序后,按顺序逐渐增加特征数量并进行PCA分析,不同水心程度数据点之间的ED逐渐增加。该结果进一步证明,400~1 700 nm所有的特征在分类识别过程中均是有益的。

2.1.4 PLSR、PNN检测建模

为进一步探究可见/近红外光谱对水心病无损检测的应用效果,分别采用PLSR和PNN结合预处理与特征提取后的不同波段光谱进行检测,结果如表1所示。

采用PLSR结合预处理与特征提取后的400~1 100 nm光谱数据分训练集与验证集对菠萝水心病进行检测,经反复训练,PLSR的建模参数FN设定为11,模型对训练集的PLSR回判R2和RMSEC分别为0.95与0.18,对于验证集的检测2和RMSEV分别为0.81和0.37,400~1 100 nm光谱对训练集的回判正确率为98.51%(1个重度水心误判为轻度水心),对测试集的检测正确率为88.24%(1个轻度水心误判为无水心;3个重度水心误判为轻度水心)。采用PLSR结合预处理与特征提取后的900~1 700 nm光谱数据分训练集与验证集对菠萝水心病进行检测,经反复训练,PLSR的建模参数FN设定为11,模型对训练集的PLSR回判R2和RMSEC分别为0.76与0.40,对于验证集的检测2和RMSEV分别为0.45和0.62,对训练集的回判正确率为80.60%(无水心中4个误判为轻度水心;轻度水心中3个误判为无水心,1个误判为重度水心;重度水心中5个误判为轻度水心),对测试集的检测正确率为58.82%(无水心中5个误判为轻度水心;轻度水心中3个误判为无水心;重度水心中6个误判为轻度水心),效果不佳。采用PLSR结合预处理与特征提取后的400~1700 nm光谱数据分训练集与验证集对菠萝水心病进行检测,经反复训练,PLSR的建模参数FN设定为14,模型对训练集的PLSR回判R2和RMSEC分别为0.96与0.17,对于验证集的检测2和RMSEV分别为0.83和0.35,对训练集的回判正确率为100%,对测试集的检测正确率为88.24%(3个无水心误判为轻度水心;1重度水心误判为轻度水心)。采用PNN结合预处理与特征提取后的400~1 100 nm光谱数据分训练集与验证集对菠萝水心病进行建模检测,经反复训练,PNN模型参数Spread设定为1.2,所建模型对训练集的回判正确率为98.51%(1个重度水心误判为轻度水心),对验证集的检测正确率为91.18%(1个轻度水心误判为无水心;2个重度水心误判为轻度水心),具有较好地检测效果。采用PNN结合预处理与特征提取后的900~1700 nm光谱数据分训练集与验证集对菠萝水心病进行建模检测,经反复训练,PNN模型参数Spread设定为0.1,所建模型对训练集的回判正确率为100%,对验证集的检测正确率为62%(无水心中1个误判为轻度水心,4个误判为重度水心;轻度水心中4个误判为无水心,1和误判为无水心;重度水心中1个误判为轻度水心,2个误判为无水心),检测效果不佳。采用PNN结合预处理与特征提取后的400~1 700 nm光谱数据分训练集与验证集对菠萝水心病进行建模检测,经反复训练,PNN模型参数Spread设定为0.2,所建模型对训练集的回判正确率为100%,对验证集的检测正确率为91.18%(1个轻度水心误判为无水心;2个重度水心误判为轻度水心),具有较好地检测效果。

表1 不同波段对菠萝水心病的检测精度与成本

注:FN为偏最小二乘模型的特征因子数,Spread为概率神经网络模型的散布常数。

Note: FN is the feature factor number of PLSR model, Spread is the spread constant of PNN model.

2.2 讨 论

菠萝水心病的发生伴随着果肉质地、颜色以及成分等变化,对其他小型薄皮水果前期研究表明[29-30],这些特征均可被可见/近红外光谱捕获,因此,本文采用可见/近红外光谱检测菠萝水心病发生程度是有依据支撑的。本文进一步验证了可见/近红外光谱结合信号预处理以及模式识别,无损检测菠萝内部水心病发生程度是可行的。

菠萝属于大型水果,检测时光的谱透过性较差,造成信号波动,且表面极为粗糙,易形成散射噪声。因此,本文采用SG与SNV处理可有效降低信号波动以及散射噪声来带的干扰,提升识别效果。特征提取主要在于剔除会降低识别精度的噪声,最大化地保留有益信息形成信息融合,本文提出采用SPA + PCA + ED分析结果表明,所有特征均包含分类识别的有益信息,均应保留。

QE pro(400~1 100 nm)比NIR QUEST(900~1 700 nm)具有更好的检测效果,是因为400~1 100 nm同时对质地、颜色以及成分变化敏感,而900~1 700 nm仅对质地和成分变化敏感[31]。此外,波长越长,光能越低,加上近红外波段的光易被水果中的水分吸收,使得通过样本后衰减较大,信噪比较低[32]。PLSR结果表明,采用QE pro与NIR QUEST联用(400~1 700 nm)可略微提升QE pro的检测效果,是因为1100~1 700 nm包含菠萝水心病识别的有益信息,可对400~1 700 nm形成信息补充与融合[33],但该方式增加检测成本较大,性价比较低。实际应用建议单独采用400~1 700 nm进行菠萝水心病检测。

PCA对菠萝水心病程度的分类结果可以看出,不同类别样本数据点之间不能用一条直线完全划分开来,存在一定非线性特性。而PNN和PLSR的映射方式分别是神经网络和线性回归,即PNN比PLSR的识别运算函数具有更强的非线性分类识别能力。因此,PNN在解决菠萝水心病发生程度的检测上具有更好的检测效果。

3 结 论

1)采用400~1 100 nm光谱原数据结合主成分分析(Principal Component Analysis,PCA)分析可将不同水心程度菠萝样本区分开来,但距离较近,且离散程度较高,聚类性较差。采用900~1 700 nm光谱原数据结合PCA分析无法将不同水心程度菠萝样本区分开来。采用400~1 700 nm光谱原数据结合PCA分析可将不同水心程度菠萝样本区分开来,相对400~1 100 nm的检测效果略有提高。

2)经多项式平滑(Savitzky Golay,SG) + 标准正态变量校正(Standard Normal Variate,SNV)处理400~1 100 nm光谱后,PCA同样可以有效区分不同水心程度,且同类样本数据点的聚类性明显增强,但不同样本之间存在少量数据点重叠,存在误判的风险。经SG + SNV处理900~1700 nm光谱后,PCA分析对样本数据点的聚类性明显增强,但分类效果仍不佳。经SG + SNV处理400~1 700 nm光谱后,可增强同类样本数据点的聚类性。连续投影算法(Successive Projections Algorithm, SPA)+ (Principal Component Analysis,PCA)+欧氏距离(Euclidean Distance,ED)分析结果显示,400~1 100 nm、900~1 700 nm、400~1 700 nm 3种波段选择包含的特征在分类识别过程中均是有益的,均应被保留。

4)偏最小二乘回归(Partial Least Squares Regression,PLSR)结合400~1 100 nm光谱数据所建模型对菠萝水心病训练集的回判正确率为98.51%,对测试集的检测正确率为88.24%。PLSR结合900~1 700 nm光谱数据所建模型对菠萝水心病训练集的回判正确率为80.60%,对测试集的检测正确率为58.82%。PLSR结合400~1 700 nm光谱数据所建模型对菠萝水心病训练集的回判正确率为100%,对测试集的检测正确率为88.24%。概率神经网络(Probabilistic Neural Network,PNN)结合400~1 100 nm光谱数据所建模型对菠萝水心病训练集的回判正确率为98.51%,对验证集的检测正确率为91.18%。PNN结合900~1 700 nm光谱数据所建模型对菠萝水心病训练集的回判正确率为100%,对验证集的检测正确率为62%。PNN结合400~1700 nm光谱数据所建模型对菠萝水心病训练集的回判正确率为100%,对验证集的检测正确率为91.18%。

5)综合考虑成本与效果,实际应用建议采用400~ 1 100 nm光谱结合多项式平滑(Savitzky Golay,SG) +标准正态变量校正(Standard Normal Variate,SNV) +概率神经网络(Probabilistic Neural Network,PNN)对菠萝水心病进行识别。下一步研究一方面可进一步提出信号处理新方法,减少建模特征数量,简化模型,另一方面可运用模型对大批量菠萝进行试验验证,不断修正模型参数以提高模型适应性,更好地服务产业。

[1] 贺军虎,栾爱萍. 菠萝水心病和裂果的发生与防治措施[J]. 草坪常见病虫害,2019,7:41.

[2] Shu H Y, Sun W, Li K M, et al. The cause for water-heart fruit of pineapple and protective measurements[J]. American Journal of Plant Sciences, 2019, 10(6): 885-892.

[3] Kishore K, Rupa T R, Samant D. Influence of shade intensity on growth, biomass allocation, yield and quality of pineapple in mango-based intercropping system[J]. Scientia Horticulturae, 2021, 278: 109868.

[4] Williams P A, Crespo O, Atkinson C J, et al. Impact of climate variability on pineapple production in Ghana[J]. Agriculture & Food Security, 2017, 6(1): 1-14.

[5] Friend D J C. Effect of night temperature on flowering and fruit size in pineapple ([L.] Merrill)[J]. Botanical Gazette, 1981, 142(2): 188-190.

[6] Liu C H, Liu Y, Fan C, et al. The effects of composted pineapple residue return on soil properties and the growth and yield of pineapple[J]. Journal of Soil Science and Plant Nutrition, 2013, 13(2): 433-444.

[7] Pahlawan M F R, Wati R K, Masithoh R E. Development of a low-cost modular VIS/NIR spectroscopy for predicting soluble solid content of banana[C]// IOP Conference Series: Earth and Environmental Science, Banda Aceh: IOP Publishing, 2021, 644: 012047.

[8] Shi H, Zhang M, Adhikari B. Advances of electronic nose and its application in fresh foods: A review[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(16): 2700-2710.

[9] 张思雨,张秋菊,李可. 采用机器视觉与自适应卷积神经网络检测花生仁品质[J]. 农业工程学报,2020,36(4)::269-277.

Zhang Siyu, Zhang Qiuju, Li Ke. Detection of peanut kernel quality based on machine vision and adaptive convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 269-277. (in Chinese with English abstract)

[10] 邵园园,王永贤,玄冠涛,等. 高光谱成像快速检测壳聚糖涂膜草莓可溶性固形物[J]. 农业工程学报,2019,35(18):245-254.

Shao Yuanyuan, Wang Yongxian, Xuan Guantao, et al. Rapid detection of soluble solids content in strawberry coated with chitosan based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 245-254. (in Chinese with English abstract)

[11] Yang B, Guo W C, Li W Q, et al. Portable, visual, and nondestructive detector integrating Vis/NIR spectrometer for sugar content of kiwifruits[J]. Journal of Food Process Engineering, 2019, 42(2): e12982.

[12] Ncama K, Opara U L, Tesfay S Z, et al. Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of ‘Valencia’ orange () and ‘Star Ruby’ grapefruit (Citrus × paradisi Macfad)[J]. Journal of Food Engineering, 2017, 193: 86-94.

[13] Jamshidi B, Minaei S, Mohajerani E, et al. Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges[J]. Computers and Electronics in Agriculture, 2012, 85: 64-69.

[14] Uwadaira Y, Sekiyama Y, Ikehata A. An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy[J]. Heliyon, 2018, 4(2): e531.

[15] Yu X J, Lu H D, Wu D. Development of deep learning method for predicting firmness and soluble solid content of postharvest Korla fragrant pear using Vis/NIR hyperspectral reflectance imaging[J]. Postharvest Biology and Technology, 2018, 141: 39-49.

[16] Sun X D, Zhu K, Jiang X G, et al. Non-destructive detection of blackheart and soluble solids content of intact pear by online NIR spectroscopy[J]. The Journal of Supercomputing, 2020, 76(5): 3173-3187.

[17] Mogollon M R, Jara A F, Contreras C, et al. Quantitative and qualitative VIS-NIR models for early determination of internal browning in ‘Cripps Pink’apples during cold storage[J]. Postharvest Biology and Technology, 2020, 161: 111060.

[18] Jamshidi B. Ability of near-infrared spectroscopy for non-destructive detection of internal insect infestation in fruits: Meta-analysis of spectral ranges and optical measurement modes[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 225: 117479.

[19] Botu, M M, Bolvansky D, Cecchini B E, et al. NIR spectroscopy is suitable to detect insect infested chestnuts[J]. Acta Horticulturae, 2014, 1043: 153-159.

[20] 徐赛,陆华忠,丘广俊,等. 水果品质无损检测研究进展及应用现状[J]. 广东农业科学,2020,47(12):229-236.

Xu Sai, Lu Huazhong, Qiu Guangjun, et al. Research progress and application status of fruit quality nondestructive detection technology[J]. Guangdong Agricultural Sciences, 2020, 47(12): 229-236. (in Chinese with English abstract)

[21] 徐赛,梁鑫,陆华忠,等. 一种菠萝水心病评级装备: 213181273U [P]. 2020-12-18.

[22] Pořízka P, Klus J, Képeš E, et al. On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 148: 65-82.

[23] Jahani S, Setarehdan S K, Boas D A, et al. Motion artifact detection and correction in functional near-infrared spectroscopy: A new hybrid method based on spline interpolation method and Savitzky–Golay filtering[J]. Neurophotonics, 2018, 5(1): 15003.

[24] Bi Y M, Yuan K L, Xiao W Q, et al. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation[J]. Analytica chimica acta, 2016, 909: 30-40.

[25] Krepper G, Romeo F, Fernandes D D, et al. Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS)[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 189: 300-306.

[26] He W, Zhou J, Cheng H, et al. Validation of origins of tea samples using partial least squares analysis and Euclidean distance method with near-infrared spectroscopy data[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 86: 399-404.

[27] Zhu Z H, Li J M, Guo Y M, et al. Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 205-209.

[28] Huang X D, Wang C Y, Fan X M, et al. Oil source recognition technology using concentration-synchronous- matrix-fluorescence spectroscopy combined with 2D wavelet packet and probabilistic neural network[J]. Science of the Total Environment, 2018, 616: 632-638.

[29] Alhamdan A M, Fickak A, Atia A R. Evaluation of sensory and texture profile analysis properties of stored Khalal Barhi dates nondestructively using Vis/NIR spectroscopy[J]. Journal of Food Process Engineering, 2019, 42(6): e13215.

[30] Arendse E, Fawole O A, Magwaza L S, et al. Fourier transform near infrared diffuse reflectance spectroscopy and two spectral acquisition modes for evaluation of external and internal quality of intact pomegranate fruit[J]. Postharvest Biology and Technology, 2018, 138: 91-98.

[31] 梁亮,刘志霄,杨敏华,等. 基于可见/近红外反射光谱的稻米品种与真伪鉴别[J]. 红外与毫米波学报,2009,28(5):353-356.

Liang Liang, Liu Zhixiao, Yang Minhua, et al. Discrimination of variety and authenticity for rice based on visual/near infrared reflection spectra[J].Journal of Infrared and Millimeter Waves, 2009, 28(5): 353-356. (in Chinese with English abstract)

[32] 刘臻臻,陈少藩,余彤泳,等. 自然光照对眼部的影响[J]. 国际眼科杂志,2020,20(3):191-196.

Liu Zhenzhen, Chen Shaofan, Yu Tongyong, et al. Effects of sunlight on eye[J].International Eye Science. 2020, 20(3): 191-196. (in Chinese with English abstract)

[33] Li H, Huang H H, Li Y F, et al. Physics of failure-based reliability prediction of turbine blades using multi-source information fusion[J]. Applied Soft Computing, 2018, 72: 624-635.

Nondestructive detection method for pineapple water core based on visible/near infrared spectroscopy

Xu Sai1, Lu Huazhong2※, Wang Xu1, Qiu Guangjun1, Wang Chen1, Liang Xin1

(1.,510640,; 2.,510640,)

Water core is a serious physiological disorder of pineapple in recent years. Effective detection of internal water core is highly urgent for the market quality of pineapple after post-harvest treatments. In this study, A nondestructive detection platform was lab-developed for the water core of pineapple usingVisible/Near-infrared (VIS/NIR) spectroscopy. The optimal parameters of the platform were set, where the integral time of 400-1 100 nm and 900-1 700 nm spectrometer were 600 and 2 000 ms, respectively, the intensity of light source was 500 W, the distance between the optical fiber and tray was 30 mm, the distance between the tray and input optical hole was 84 mm, while, all the light, input optical hole, pineapple sample, output optical hole, and optical fiber were in the same horizontal line. Three settings of spectrum wavelength (400-1 100 nm VIS/NIR spectrum, 900-1 700 nm NIR spectrum, and 400-1 700 nm VIS/NIR spectrum) were applied for the pineapple sampling. After that, the pineapple was cut open to artificially and immediately record the water core. The Savitzky Golay (SG) and Standard Normal Variate (SNV) were also applied for the subsequent data processing. Furthermore, the extraction of the feature was conducted using the Successive Projections Algorithm (SPA), Principal Component Analysis (PCA), and Euclidean Distance (ED). Some models were finally established using the Partial Least Squares Regression (PLSR) and Probabilistic Neural Network (PNN). The results showed that an optimal procedure of detection was achieved for the water core using three settings of spectrum wavelength: to take the full wavelength data for SG and SNV processing, and then build a detection model by PNN. Using 400-1 100 nm spectrum and the optimal detection, the accuracy of the model for the calibration set of the water core was 98.51%, while the accuracy of the model for the validation set was 91.18%. Using 900-1 700 nm spectrum and the optimal detection, the accuracy of the model for the calibration set of the water core was 100%, while, the accuracy of the model for the validation set was 62%. Using 400-1 700 nm spectrum and the optimal detection, the accuracy of the model for the calibration set of water core was 100%, while the accuracy of the model for the validation set was 91.18%. Besides, both PCA and PLSR showed that there was a relatively less significant improvement, even though the detection of water core was slightly improved by 400-1 700 nm spectrum, compare with only by 400-1 100 nm. Thus, a practical detection of water core was suggested to use the 400-1 100 nm spectrum that combined with SG + SNV + PNN modeling in industrial production. Specifically, the marking price of 400-1 100 nm spectrometer like QE pro was about 130 000 Yuan, and the marking price of 900-1 700 nm spectrometer like NIR QUEST was about 150 000 Yuan, while, the marking price of 400-1 700 nm spectrometer like a combination of QE pro and NIR QUEST was about 280 000 Yuan. Consequently, the VIS/NIR spectroscopy can be widely expected to nondestructively and rapidly identify the internal water core of pineapple in modern agriculture.

nondestructive detection; models; pineapple; water core; visible/near infrared spectroscopy

10.11975/j.issn.1002-6819.2021.21.033

TP29

A

1002-6819(2021)-21-0287-08

徐赛,陆华忠,王旭,等. 基于可见/近红外光谱的菠萝水心病无损检测[J]. 农业工程学报,2021,37(21):287-294.doi:10.11975/j.issn.1002-6819.2021.21.033 http://www.tcsae.org

Xu Sai, Lu Huazhong, Wang Xu, et al. Nondestructive detection method for pineapple water core based on visible/near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 287-294. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.21.033 http://www.tcsae.org

2021-06-22

2021-08-10

广东省乡村振兴战略专项(403-2018-XMZC-0002-90);广东省自然科学基金项目(2021A1515010834);国家自然科学基金项目(31901404);广东省农业科学院十四五新兴学科团队建设项目(202134T);广东省农业科学院金颖之星人才培养项目(R2020PY-JX020);广东省农业科学院创新基金项目(202034)

徐赛,博士,副研究员,研究方向为农产品品质无损检测技术与装备。Email:xusai@gdaas.cn

陆华忠,博士,教授,博士生导师,研究方向为农产品物流保鲜与智能检测技术。Email:huazlu@scau.edu.cn

猜你喜欢
心病菠萝正确率
个性化护理干预对提高住院患者留取痰标本正确率的影响
课程设置对大学生近视认知的影响
便秘是否也是一种心病?
杧果幼果黑心病与土壤理化性状的相关性
最爱酸酸甜甜菠萝鸡
菠萝
吃菠萝为什么要用盐水泡
生意
生意
人在江湖走,谁能不得病?