邗江中等专业学校 王小敏
教育部《关于全面深化课程改革 落实立德树人根本任务的意见》中明确提出“核心素养”概念,将“核心素养”作为各学科课程目标。
《中等职业学校数学课程标准(2020)》中明确规定了数学六大核心素养:数学运算、直观想象、逻辑推理、数学抽象、数据分析、数学建模。同时提出使学生初步学会“用数学眼光观察现实,用数学思维分析现实,用数学语言表达现实”。
逻辑推理是数学思维的关键素养,培养学生从事实和命题出发,发现现实背后的规律,以规律为原则,从数学角度发现和提出问题,用数学知识和方法分析和解决问题。针对如何将逻辑推理核心素养融入中职数学课堂教学中,本文以“平面的基本性质”为例,从公理及推论的得出的角度进行阐述。
逻辑推理有三种方式:演绎、归纳和溯因。给定前提、结论和规则,而前提导致结论,例如:
前提:下雨了。
规则:下雨使草地变湿。
结论:草地是湿的。
演绎:用来决定结论。
归纳:用来决定规则。
溯因:用来决定前提。
1.水平一
在熟悉的单一情境中,能辨识三种推理,能辨明数学命题中条件与结论的逻辑关系,会有条理地表述简单的数学命题,能够明确数学问题中的前提、结论和规则的关系,能够进行简单的逻辑推理,从而运用逻辑推理发现问题和解决问题。
2.水平二
在熟悉的关联情境中,在水平一的基础上略微提高,并善于运用逻辑推理分析问题、说明问题和论证问题。
逻辑推理在中职数学教学中有多个章节涉及,本文仅以《平面的基本性质》为例进行阐述。
生活情境:一扇门可以自由转动,如果锁住了,门就固定住了,为什么?
教师启发引导:门转动是什么原理?
学生回答:铰链。
教师:如果锁住了,门就固定住了,为什么?
学生回答:一边用铰链,另一边有门锁。
教师:什么原理呢?学完本节内容,我们可以解决这个问题。
1.公理1
学生动手实践:将三角板的两个顶点放在桌面上。
教师启发引导:会发现这条边就在桌面上,为什么?
学生思考:因为三角板的两个顶点在桌面上,所以归纳出这条边上所有的点都在桌面上。
教师启发引导:两个顶点代表两个点,这条边所在直线与平面的关系呢?
学生可以归纳出:如果两点在一个平面内,那么两点所在的直线在这个平面内。
教师再启发:我们通过逻辑推理得出了结论,如何将语言表述得更严谨?
学生在教师的启发下小组交流合作,得出严谨的公理1。
练一练:画出公理1 的图形,再使用数学符号语言表示。
2.公理2
学生动手实践:三角板的一个顶点落在平整的桌面上。
教师启发引导:三角板与桌面有几个交点?
学生回答:一个交点。
教师再启发引导:三角板所在的平面与桌面有几个交点?
学生回答:有无数个交点。
教师再启发引导:这无数个交点有什么共同特征?
学生回答:可以连成一条线。
教师再启发引导:这条线与最初的交点有什么关系?
学生回答:这条线过交点。
教师再启发引导:将语言表述得更严谨些。
学生在教师的启发下小组交流合作,得出严谨的公理2。
练一练:画出公理2 的图形,再使用数学符号语言表示。
3.公理3
学生动手实践:三角板的三个顶点都落在平整的桌面上。
教师启发引导:三角板就紧贴在桌面上,为什么?学生思考回答:因为三角板的三个点都在桌面上。教师再启发引导:这三个点位置有什么关系?
学生回答:不在同一直线上。
教师再启发引导:如何将语言表述严谨?
学生思考,小组交流,得出由不共线三点的条件,可以确定一个平面的公理3。
练一练:画出公理3 的图形,再使用数学符号语言表示。
1.推论1
教师启发提问:由不在同一直线上的三点可以确定一个平面。是否还有其他确定平面的条件?动手画一画、连一连。
学生动手画图:过点A,B,C中的其中两点A和B作了一条直线。
教师启发引导:确定一个平面,有其他条件吗?
学生通过推理得出:过AB的直线和点C也可以确定一个平面。
教师再启发引导:换成一般的情况,不限于具体直线,也不限于哪个点,有什么结论?
学生思考,小组交流,得出由直线和直线外一点的条件,可以确定一个平面的推论1。
2.推论2
教师启发提问:推论1 是作了一条直线,那么还可以怎么作图呢?
在推论1 的基础上,学生作出了两条相交直线,过AB和AC的直线相交于点A。
教师启发引导:此时我们能得出什么结论?如果不限于具体直线呢?
学生思考,小组交流,得出由两条相交直线的条件,可以确定一个平面的推论2。
3.推论3
教师启发提问:在推论2 的基础上,我们还可以如何作图,得出确定一个平面的条件?
学生动手实践:作出过AB的直线,并过点C作出AB所在直线的平行线。
教师启发引导:此时我们得出确定平面的什么条件?如果不限于具体的直线呢?
学生思考,小组交流,得出由两条平行线的条件,可以确定一个平面的推论3。
中等职业学校数学课程的任务,是培养学生的数学核心素养,使学生在以后的生活和学习中,逐步形成运用数学知识和经验发现问题的意识,逐步提高运用数学的方法和工具解决问题的能力,而逻辑推理是终身学习的最重要的核心素养。
【现实案例】
1.照相机的三脚架为什么能稳定地支撑在桌面上?
2.建筑工人用水泥浇注完地面后,要检查地面是否平整,用什么方法?
3.回到本节开头的生活情境:为什么门锁住了,就固定了?
学生思考回答,分别使用了本节课学习的公理与推论来解决现实生活案例。
【总结】
逻辑推理核心素养目标:使中职学生能够基本掌握逻辑推理的一般方法,能通过逻辑推理把握事物之间的基本联系,基本形成条理清楚的思维能力和表达能力,养成敢于质疑、善于思考、严谨求实的品格。
本节以平面的基本性质的三个公理及推论为例,通过动手实践、启发思考、练一练等流程,引导学生通过逻辑推理的方法,由特殊到一般和类比的方式,得出公理和推论。