说零点问题

2021-06-06 13:25王晓红
黑龙江教育·中学 2021年1期
关键词:横坐标交点零点

王晓红

题目:已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()

A.(2,+∞)   B.(1,+∞)   C.(-∞,-2)   D.(-∞,-1)

高考背景:

此题是2014年新课标I理科11题,是一道关于零点求参数范围问题.在近几年的高考中,零点问题频频出现,不仅出现于客观题中,考查考生对零点基础知识的理解与基本技能的掌握,而且渗透于主观题中,多与导数有机融合,考查考生的思辨能力、转化能力.该类型题的特征是:设问多样、隐显分明、注重基础、适度交汇,其解法要因题择法,既要重视定义、定理、构造等代数方法,又要强调数与形的转化思想.事实上,教材概述零点问题,就给零点赋以“形”与“数”的双刃面,这不仅拓展了知识理解的深度,而且提升了问题解答的宽度.

知识准备:

1.函数零点的定义.

一般地,如果函数y=f(x)在实数a处的值等于零,即f(a)=0,则a叫作这个函数的零点.

2.几个等价关系.

方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?圳函数y=f(x)有零点.

解题方法:

题目:已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()

A.(2,+∞)    B.(1,+∞)   C.(-∞,-2)   D.(-∞,-1)

解法一:一个函数讨论画图象.

函数y=f(x)的零点,即y=f(x)函数的图象与x轴交点的横坐标.因此,求函数的零点问题可转化为函数y=f(x)的图象与x轴交点的横坐标.

f '(x)=3ax2-6x=3x(ax-2).

①a=0时,f(x)=-3x2+1,易知舍去.

②a>0时,f(x)=0则x1=0,x2 =

由图象可知函数f(x)存在负数零点,此时不满足题意.

③a<0时,

由图可知函数f(x)的极大值为f(0)=1>0,所以只需f(x)的极小值f()>0,所以a<-2.

综上所述,a的取值范围是(-∞,-2).

解法二:转化为方程的根,然后参量变量分离.

函数f(x)的零点,即函数y=f(x)的图象与轴交点的横坐标.因此,求函数的零点问题可转化为方程f(x)=0的根.

转化为ax3-3x2+1=0有唯一根,且此根为负.a=,设y=(奇函数),y'=

x → 0时,y → -∞.

x → +∞时,y → 0.

由图可知,a<-2.

解法三:转化为方程的根,然后化为两个函数图象交点个数问题.

函数y=f(x)的零点,即函数y=f(x)的图象与x轴交点的横坐标.因此,求函数的零点问题可转化为y=f(x)函数的图象与轴x交点的横坐标,或将方程f(x)=0整理成f1(x)=f2(x)的形式,然后在同一直角坐标系下,画出函数y=f1(x),y=f2(x)的图象,交点的横坐标即为函数f(x)的零点,交点的个数即为函数f(x)的零點个数.

ax3-3x2+1=0,x2(ax-3)+1=0,ax-3=-.

y=ax-3与y=-相切时,斜率为±2,由题意可知a<-2.

归纳说明:化为两个函数时,选择曲线对曲线不易控制,选择直线对曲线相对容易.

比对三种方法,分析哪个方法更适合本题.

变式训练:

变式(1)已知函数f(x)=ax3-3x2+1,若f(x)有两个零点,则a的取值范围是           .

变式(2)已知函数f(x)=ax3-3x2+1,若f(x)有三个零点,则a的取值范围是            .

变式(3)已知函数f(x)=ax3-3x2+1,若f(x)在区间[0,2]上有两个零点,则a的取值范围是           .

首先用上述的第一种方法解决三个变式

变式(1)

①a=0时可以,

②a>0且f()=0,

③a<0且f()=0,

∴a为2或-2或0.

变式(2)

①a>0且f()<0,

②a<0且f()>0,

∴-2

变式(3)

a>0,f(0)≥0,f(2)≥0,f()<0,

用上述另外两种方法解决三个变式,分析哪方法更恰当.

变式(4)已知函数f(x)=ax3-3x2+1,若x>0,f(x)>0恒成立,则a的取值范围是                     .

首先用上面的第一种方法解决,

①a=0舍去,

②a>0且f()>0,

③a<0舍去,

∴a>2.

用另外两种方法解决,分析哪个方法更恰当.

变式(5)(高考题)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是(   )

A.[-2,-3]     B.[-6,]      C.[-6,-2]     D.[-4,-3]

当x=0时,a∈R,成立.

当0

在00,故y在[0,1]上递增.

∴ymax=-6,∴a≥-6.

当-2≤x<0时,a≤,同理可知,

∴a≤-2.

综上所述,-6≤a≤-2.

对于本题,若是从“求函数f(x)=ax3-x2+4x+3(-2≤x≤1)的最小值”角度求解将很麻烦,例题本身求导之后可以因式分解,用最值法容易解决,所以解题需要合理的方法.

变式(6)(高考题)当a<时, 关于x的不等式(ex-a)x-ex+2a<0的解集中有且只有两个整数解,则实数a的取值范围是                                    .

转化为(x-1)ex

-3a>-2e-1-3e-2≥-4a,∴≤a<

归纳说明:将问题转化为两个函数更为恰当,隐直线的挖掘,进而化为直对曲..

归纳总结:

解决函数零点问题主要依赖数形结合,可以直接用一个函数讨论画图象,也可以参变量分离,又可以化为两曲线(两函数)讨论画图象,无论选择哪种办法都依赖于图象,正所谓“数形结合百般好,隔离分家万事休”.我們可以从体会更深刻的数学转化思想.

猜你喜欢
横坐标交点零点
不可轻用的位似形坐标规律
“平面直角坐标系”解题秘籍
2019年高考全国卷Ⅱ文科数学第21题的五种解法
一类Hamiltonian系统的Abelian积分的零点
阅读理解
指数函数与幂函数图象的交点的探究性学习
可以选取无限远点作为电势零点的充分与必要条件