刘真 张浩然
【摘要】 目的:研究生長分化因子-5(GDF-5)对间充质干细胞向肌腱细胞分化及迁移潜能的影响。方法:用GDF-5对骨髓间充质干细胞(MSCs)进行14 d诱导分化,取样对细胞外基质合成及向肌腱细胞分化相关基因表达进行测定分析;通过体外三维细胞迁移模型,评价GDF-5对间充质干细胞迁移能力的作用及影响。结果:20、100、500 ng/mL GDF-5诱导4 d后的细胞数均高于0 ng/mL GDF-5诱导(P<0.05),且随着GDF-5浓度增高增殖细胞数呈现增加的趋势。100 ng/mL GDF-5诱导4、12 d的细胞数均高于0 ng/mL GDF-5诱导(P<0.05),随着培养时间的延长,差异更加明显。100 ng/mL GDF-5诱导分化骨髓干细胞12 d后,Tenascin-C与Ⅰ型胶原蛋白的基因表达量均高于0 ng/mL GDF-5诱导(P<0.05)。100 ng/mL GDF-5诱导的细胞迁移能力大于0 ng/mL GDF-5诱导(P<0.05)。结论:GDF-5可以促进间充质干细胞向肌腱细胞分化,并诱导活化间充质干细胞的迁移,该机制可能在肌腱损伤的修复重建中具有重要意义。将GDF-5与间充质干细胞进行联合治疗可为肌腱损伤的修复提供新的治疗方法。
【关键词】 骨髓间充质干细胞 细胞迁移 生长分化因子-5
Effects of GDF-5 on Differentiation into Tendon Cells and Migration of Bone Marrow Derived Mesenchymal Stem Cells/LIU Zhen, ZHANG Haoran. //Medical Innovation of China, 2021, 18(20): 0-032
[Abstract] Objective: To investigate the effects of the growth and differentiation factor-5 (GDF-5) on differentiation into tendon cells and migration of bone marrow derived mesenchymal stem cells (BMSCs). Method: BMSCs were treated with GDF-5 for 14 d, and the samples were collected. The extracellular matrix synthesis and the expression of genes related to differentiation into tendon cells were analyzed. The effects of GDF-5 on the migration ability of mesenchymal stem cells were evaluated by three-dimensional cell migration model in vitro. Result: The number of cells induced by 20, 100 and 500 ng/mL GDF-5 for 4 d were higher than that induced by 0 ng/mL GDF-5 (P<0.05), and the number of proliferating cells increased with the increase of GDF-5
concentration. The number of cells induced by 100 ng/mL GDF-5 on day 4 and 12 were higher than that induced by 0 ng/mL GDF-5 (P<0.05), and the difference was more obvious with the extension of culture time. After inducing bone marrow stem cells with 100 ng/mL GDF-5 for 12 d, the gene expression levels of Tensascin-C and Ⅰ type collagen were both higher than those of 0 ng/mL GDF-5 induction (P<0.05). The cell migration ability induced by 100 ng/mL GDF-5 was higher than that induced by 0 ng/mL GDF-5 (P<0.05). Conclusion: GDF-5 can promote differentiation into tendon cells of mesenchymal stem cells and induce migration of activated mesenchymal stem cells, which may play an important role in the repair and reconstruction of tendon injury. Combined treatment of GDF-5 with mesenchymal stem cells may provide a new therapeutic method for tendon injury repair.
[Key words] BMSCs Cell migration GDF-5
First-author’s address: Shanghai Xuhui Central Hospital, Shanghai 200031, China
doi:10.3969/j.issn.1674-4985.2021.20.007
肌腱的损伤断裂是骨科领域的重要疾病,尤其在运动损伤中更为常见[1-2]。由于肌腱组织难于修复,且修复后组织结构较弱,极易发生再次断裂和粘连等并发症[3]。因此,利用组织工程及再生医疗技术提高肌腱的愈合近年来成为骨科领域关注的焦点[4-5],尤其是相关生长因子结合干细胞治疗更是有望成为修复肌腱损伤的新手段[6-7]。
骨髓干细胞具有肌肉骨组织多向分化潜能,如在体外适当诱导下可以分化为成骨细胞、软骨细胞、脂肪细胞、肌细胞等[8-11]。间充质干细胞已被应用于软组织损伤的修复。然而,骨髓间充质干细胞向肌腱细胞分化的相关研究报道极少。
生长分化因子-5(growth differentiation factor-5,GDF-5)又被称为软骨来源成形蛋白-1或BMP-14,在骨关节形成、软骨内成骨和肌腱韧带损伤修复等生理过程中其重要作用[12-15]。有动物实验结果表明利用GDF-5基因治疗可以增强跟腱修复强度[16]。本研究将通过体外实验考察GDF-5对骨髓干细胞向肌腱细胞分化的诱导作用及迁移能力的影响,为阐明GDF-5促进肌腱修复的机制提供理论基础,为肌腱修复提供新的治疗手段,现报道如下。
1 材料与方法
1.1 实验动物和试剂 选用6周龄SD雄性大鼠,由哈尔滨医科大学实验动物中心提供。DMEM培养液、胎牛血清、Ⅰ型胶原酶和胰蛋白酶购自Gibico公司。GDF-5购自Peprotech公司。MTT购自 Sigma Chemical公司。QuantiTect SYBR Green PCR试剂盒购自Qiagen公司。
1.2 方法
1.2.1 骨髓干细胞的分离与原代培养 取SD大鼠双侧股骨、胫骨,剪去两侧骺端,用10 mL注射器针头抽取适量含10% FBS的完全培养基冲洗骨髓腔,制成单细胞悬液。细胞悬液在1 500 r/min离心5 min后,去上清,用含10% FBS的DMEM培养液重悬后转移至培养瓶中常规传代培养。
1.2.2 细胞增殖测定 将骨髓干细胞以5.0×104个/孔的密度种植于6孔板中,分别用含有0、20、100、500 ng/mL GDF-5的培养基培养4 d后,每孔加入30 μL MTT,孵箱内作用3 h后加弃去上清。加入二甲基亚砜。20 min后用酶标仪测定490 nm波长吸光度,与细胞数标准曲线的吸光度值相对比计算出细胞数。
1.2.3 向肌腱细胞分化基因表达测定 将骨髓干细胞以5.0×104个/孔的密度种植于6孔板中,分别用含有100 ng/mL GDF-5和不含有GDF-5(0 ng/mL)的培养基培养12 d后,提取细胞总RNA,通过逆转录反应(退火,70 ℃,10 min;cDNA合成,42 ℃,60 min;热灭活,95 ℃,5 min)制备cDNA,于-70 ℃保存。根据QuantiTect SYBR Green PCR试剂盒操作手册进行定量PCR测定,应用25 μL SYBR Green反应体系,分别加入300 nmol上游和下游引物,具体如下:Tenomodulin上游引物 5’-GGA CTT TGA GGA GGA TGG-3’,下游引物5’-CGC TTG CTT GTC TGG TGC-3’;Tenascin-C上游引物5’-GCT ACT CCA GAC GGT TTC-3’,下游引物5’-TTC CAC GGC TTA TTC CAT-3’;ColⅠ (α1) typeⅠ上游引物5’-AGG CTT TGA TGG ACG CAA TG-3’,下游引物5’-GCG GCT CCA GGA AGA CC-3’。加入3 μL cDNA,充分混合后离心,用PCR仪进行测定分析(共40循环:变性温度为94 ℃,30 s;退火温度为55 ℃,30 s;扩增温度为72 ℃,30 s)。
1.2.4 三维细胞诱导迁移实验 用类组织缺损体外细胞迁移评价模型对干细胞在GDF-5的诱导下迁移能力进行评价。将含有100 ng/mL GDF-5和不含有GDF-5(0 ng/mL)的改性天然水凝胶羟苯基丙酸/明胶(Gtn-HPA)水凝胶灌注于模具中固化得到直径8.66 mm、厚约4 mm的核,周围灌注Ⅰ型胶原和骨髓干细胞,这样就构建了一个类似于内部为水凝胶填充的缺损、周围有类组织包绕的缺损模型,分别在第4、8、12天通过倒置显微镜观察干细胞向水凝胶内迁移的数量和距离,并作定量分析。
1.3 统计学处理 采用SPSS 19.0软件对所得數据进行统计分析,计量资料用(x±s)表示,比较采用单因素方差分析,以P<0.05为差异有统计学意义。
2 结果
2.1 GDF-5可促进骨髓干细胞增殖 20、100、500 ng/mL GDF-5诱导4 d后的细胞数分别为(13.1±0.5)、(13.6±0.2)、(13.8±0.1)×104个/孔,均显高于0 ng/mL GDF-5诱导的(10.2±0.3)×104个/孔(P<0.05),且随着GDF-5浓度增高增殖细胞数呈现增加的趋势。100 ng/mL GDF-5诱导4、12 d的细胞数分别为(13.6±0.2)、(33.4±2.3)×104个/孔,均高于0 ng/mL GDF-5诱导的(10.2±0.3)、(22.2±1.5)×104个/孔(P<0.05),随着培养时间的延长,差异更加明显。见图1。
2.2 骨髓干细胞特异性向肌腱细胞分化基因的表
达 100 ng/mL GDF-5诱导分化骨髓干细胞12 d后,测得骨髓干细胞的Tenomodulin基因表达未见显著性增加(P>0.05),而Tenascin-C的表达量的差异倍数为(2.2±0.2)高于0 ng/mL GDF-5诱导的(1.30±0.05)(P<0.05),Ⅰ型胶原蛋白的基因表达量的差异倍数为(4.3±0.4),高于0 ng/mL GDF-5诱导的(0.90±0.04)(P<0.05)。见图2。
2.3 骨髓干细胞的细胞迁移 类组织缺损体外细胞迁移评价模型对干细胞在GDF-5的诱导下迁移能力进行了评价,见图3A。100 ng/mL GDF-5诱导4、8、12 d后每厘米迁移界面细胞迁移数分别为14.6(3.6,58.6)、256.6(168.4,291.3)、344.8(256.1,383.4)个/cm,而0 ng/mL GDF-5诱导下分别为0(0,0)、7.4(0,36.7)、124.9(88.4,161.7)个/cm,100 ng/mL GDF-5诱导8、12 d的每厘米迁移界面细胞迁移数均大于0 ng/mL GDF-5(P<0.05)。100 ng/mL GDF-5誘导12 d,骨髓干细胞迁移能力大于0 ng/mL GDF-5。见图3B。
3 讨论
肌腱缺损的愈合过程包括含有肌腱细胞在内的细胞成分在损伤局部分裂、增殖、分化、细胞外基质的沉积与重建等过程,相关细胞因子在这一修复过程中也起着重要的调控作用[17]。由于成熟肌腱细胞进一步分裂、增殖潜力有限,因此,本研究通过考察GDF-5对骨髓干细胞向肌腱细胞分化的诱导作用及迁移能力的影响,为二者联合应用促进肌腱愈合的可能性提供理论依据。
骨髓干细胞具有多向分化潜能,易于提取和分离,不仅在硬组织领域已经得到一定的应用,在软组织修复方面,也被越来越多的证实有着良好的应用前景。骨髓干细胞在体外适当诱导条件下可以分化为成骨细胞,软骨细胞,脂肪细胞,肌细胞等,然而,骨髓干细胞向肌腱细胞诱导分化的相关报道极少。
GDF-5又被称为软骨来源成形蛋白-1或BMP-14,越来越多的证据表明其在肌腱韧带的发育和损伤修复过程中起重要的调节作用。GDF-5基因缺陷会导致小鼠肌腱愈合障碍[18];还有动物实验结果表明GDF-5修饰的缝线可以增加修复后肌腱的厚度[19]。此外,用负载GDF-5的胶原海绵桥接修复跟腱缺损,可以显著增加修复后跟腱的强度[20]。上述结果都表明了GDF-5可以促进肌腱的重建与修复,但是目前为止,其在体外对干细胞的作用的相关研究尚少见报道。
本研究考察了不同浓度GDF-5对骨髓干细胞增殖的影响,结果显示,各浓度GDF-5作用下细胞增殖数均明显高于0 ng/mL GDF-5(P<0.05),且随着GDF-5浓度增高增殖细胞数呈现增加的趋势,100 ng/mL GDF-5诱导4、12 d的细胞数均高于0 ng/mL GDF-5诱导(P<0.05),随着培养时间的延长,差异更加明显。因此,GDF-5可以促进骨髓干细胞的增殖,其作用在500 ng/mL范围内随着浓度的增高而增强。结果显示,100 ng/mL GDF-5诱导12 d后特异性向肌腱细胞分化标志物Tenascin-C、肌腱细胞外主要基质Ⅰ型胶原蛋白的基因表达均显著提高(P<0.05)。说明GDF-5可以促进骨髓干细胞向肌腱细胞分化和细胞外基质的合成,从而增加肌腱修复缺损过程中肌腱细胞表型的维持、干细胞向肌腱细胞分化和基质沉积,进而提高肌腱修复强度,这与文献[21-22]在脂肪干细胞上取得的研究结果相似。本研究用类组织缺损体外细胞迁移评价模型对干细胞在GDF-5的诱导下迁移能力进行了评价,结果显示,100 ng/mL GDF-5诱导的细胞迁移能力大于0 ng/mL GDF-5诱导,所以,GDF-5诱导可促进骨髓干细胞的细胞迁移,该机制在肌腱修复与重建中可能起着重要作用。Date等[23]的研究也表明,GDF-5可以促进肌腱纤维母细胞的迁移,且这种迁移为整合素-α2介导。因此,GDF-5可能通过细胞诱导迁移作用[24],使肌腱损伤周边的内源性干细胞迁移至缺损区,参与修复重建过程。
本实验结果提示,如果将GDF-5与骨髓干细胞联合应用修复肌腱损伤,一方面GDF-5可以促进骨髓干细胞的增殖和向肌腱细胞分化,还可以诱导内源性干细胞迁移入肌腱损伤局部参与修复重建过程,这为肌腱的损伤修复细胞治疗提供了新的治疗思路。
参考文献
[1] Lemme N J,Li N Y,Kleiner J E,et al.Epidemiology and Video Analysis of Achilles Tendon Ruptures in the National Basketball Association[J].Am J Sports Med,2019,47(10):2360-2366.
[2] Aicale R,Tarantino D,Maffulli N.Overuse injuries in sport:a comprehensive overview[J].J Orthop Surg Res,2018,13(1):309.
[3] Magnusson S P,Kjaer M.The impact of loading,unloading,ageing and injury on the human tendon[J].J Physiol,2019,597(5):1283-1298.
[4] Snedeker J G,Foolen J.Tendon injury and repair-A perspective on the basic mechanisms of tendon disease and future clinical therapy[J].Acta Biomater,2017,63:18-36.
[5] Rieu C,Picaut L,Mosser G,et al.From Tendon Injury to Collagen-based Tendon Regeneration:Overview and Recent Advances[J].Curr Pharm Des,2017,23(24):3483-3506.
[6] Costa-Almeida R,Calejo I,Gomes M E.Mesenchymal Stem Cells Empowering Tendon Regenerative Therapies[J].Int J Mol Sci,2019,20(12):3002.
[7] Citeroni M R,Ciardulli M C,Russo V,et al.In Vitro Innovation of Tendon Tissue Engineering Strategies[J].Int J Mol Sci,2020,21(18):6726.
[8] Zhang M,Matinlinna J P,Tsoi J K H,et al.Recent developments in biomaterials for long-bone segmental defect reconstruction:A narrative overview[J].J Orthop Translat,2019,22:26-33.
[9] Zhang R,Ma J,Han J,et al.Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis[J].Am J Transl Res,2019,11(10):6275-6289.
[10] Lim W L,Liau L L,Ng M H,et al.Current Progress in Tendon and Ligament Tissue Engineering[J].Tissue Eng Regen Med,2019,16(6):549-571.
[11] Yu H,Cheng J,Shi W,et al.Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells[J].Acta Biomater,2020,106:328-341.
[12] Leong N L,Kator J L,Clemens T L,et al.Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration[J].J Orthop Res,2020,38(1):7-12.
[13] Qu Y,Zhou L,Lv B,et al.Growth differentiation factor-5 induces tenomodulin expression via phosphorylation of p38 and promotes viability of murine mesenchymal stem cells from compact bone[J].Mol Med Rep,2018,17(3):3640-3646.
[14] Sun K,Guo J,Yao X,et al.Growth differentiation factor 5 in cartilage and osteoarthritis:A possible therapeutic candidate[J/OL].Cell Prolif,2021,54(3):e12998.
[15] Xu H,Sun M,Wang C,et al.Growth differentiation factor-5-gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration[J].Biofabrication,2020,13(1):015010.
[16] de Aro A A,Carneiro G D,Teodoro L F R,et al.Injured Achilles Tendons Treated with Adipose-Derived Stem Cells Transplantation and GDF-5[J].Cells,2018,7(9):127.
[17] Prabhath A,Vernekar V N,Sanchez E,et al.Growth factor delivery strategies for rotator cuff repair and regeneration[J].Int J Pharm,2018,544(2):358-371.
[18] Chhabra A,Tsou D,Clark R T,et al.GDF-5 deficiency in mice delays Achilles tendon healing[J].J Orthop Res,2003,21(5):826-835.
[19] Rickert M,Jung M,Adiyaman M,et al.A growth and differentiation factor-5(GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats[J].Growth Factors,2001,19(2):115-126.
[20] Aspenberg P,Forslund C.Enhanced tendon healing with GDF 5 and 6[J].Acta Orthop Scand,1999,70(1):51-54.
[21] Park A,Hogan M V,Kesturu G S,et al.Adipose-Derived Mesenchymal Stem Cells Treated with Growth Differentiation Factor-5 Express Tendon-Specific Markers[J].Tissue Eng Part A,2010,16(9):2941-2951.
[22]席彥东,李双,徐钧,等.GDF-5对大鼠肌腱细胞及腱鞘滑膜细胞增殖及凋亡的影响[J].华中科技大学学报(医学版),2009,38(6):800-811.
[23] Date H,Furumatsu T,Sakoma Y,et al.GDF-5/7 and bFGF activate integrin alpha2-mediated cellular migration in rabbit ligament fibroblasts[J].J Orthop Res,2010,28(2):225-231.
[24] Li X,Wang F,Lan Y,et al.GDF-5 induces epidermal stem cell migration via RhoA-MMP9 signalling[J].J Cell Mol Med,2021,25(4):1939-1948.
(收稿日期:2021-06-01) (本文编辑:田婧)