麦蚜对拟除虫菊酯类杀虫剂抗性研究进展

2021-03-12 03:29龚培盼李新安王超李祥瑞张云慧李建洪朱勋
植物保护 2021年1期
关键词:抗药性

龚培盼 李新安 王超 李祥瑞 张云慧 李建洪 朱勋

摘要 :麦蚜是为害小麦的一类重要害虫,广泛分布于我国各小麦种植区。2016年-2018年我国麦蚜总体偏重发生,严重影响小麦产量和品质,造成巨大的经济损失。拟除虫菊酯类杀虫剂是防治麦蚜的主要杀虫剂类型之一,但由于化学农药的长期使用,麦蚜对拟除虫菊酯类杀虫剂产生了不同程度的抗性。本文综述了拟除虫菊酯类杀虫剂作用机制、麦蚜对拟除虫菊酯类杀虫剂的抗性现状以及近年来拟除虫菊酯类杀虫剂抗性机制研究的主要进展。

关键词 :麦蚜; 拟除虫菊酯杀虫剂; 抗药性

中图分类号: S 481.4

文献标识码: A

DOI: 10.16688/j.zwbh.2019543

Research advances in pyrethroid insecticide resistance in wheat aphids

GONG Peipan1,2, LI Xinan2, WANG Chao2, LI Xiangrui2, ZHANG Yunhui2, LI Jianhong1*, ZHU Xun2*

(1. Hubei Key Laboratory of Utilization of Insect Resources and Sustainable Pest Management, College of

Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China;

2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of

Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

Abstract :Wheat aphids are a group of important pests that infect wheat cereal and are widely distributed in China. The overall occurrence of wheat aphids in China in 2016-2018 has seriously affected wheat yield and quality, causing huge economic losses. Pyrethroid insecticides are among the main types of insecticides for controlling the wheat aphid. However, due to the longterm use of chemical insecticides, wheat aphids have developed varying degrees of resistance to pyrethroid insecticides. This article reviewed the mechanisms of action of pyrethroid insecticides, the current status of resistance of wheat aphids to pyrethroid insecticides, and the main advances in the research of pyrethroid insecticide resistance mechanisms in recent years.

Key words :wheat aphids; pyrethroid insecticides; pesticide resistance

小麥在世界各地广泛种植,是我国主要的粮食作物之一,年播种面积仅次于水稻和玉米。小麦蚜虫是小麦上的重要害虫之一,在我国为害小麦的蚜虫种类主要有麦长管蚜Sitobion miscanthi (Fabricius)、禾谷缢管蚜 Rhopalosiphum padi (Linnaeus)、麦二叉蚜Schizaphis graminum (Rondani) 和麦无网长管蚜 Metopolophium dirhodum (Walker)。麦蚜属于半翅目 Hemiptera 蚜科 Aphididae,以成蚜、若蚜吸食小麦叶、茎、嫩穗的汁液引起植株营养恶化,造成小麦籽粒饥瘦或不能结实,排泄的蜜露覆盖在叶片表面,影响呼吸和光合作用。此外,麦蚜也是传播植物病毒的重要昆虫媒介,造成小麦黄矮病[1]。近年来由于全球气候变暖,北方地区冬季温暖少雨,年后气温回升快等气候条件,麦蚜呈现出虫害发生提前、为害期长、峰期蚜量大等特点,严重影响小麦品质和产量,造成巨大损失[2]。目前生产上对麦蚜的防治仍以化学防治为主,而化学防治引起的抗药性问题是导致防效降低,甚至防治失败的重要原因。麦蚜对各类常用杀虫剂的抗性报道也越来越多[34]。

1 拟除虫菊酯杀虫剂

拟除虫菊酯类杀虫剂是从天然除虫菊素衍生而来的一类化学农药。天然除虫菊素包括除虫菊素Ⅰ(pyrethrins Ⅰ)、除虫菊素Ⅱ(pyrethrins Ⅱ)、瓜叶除虫菊素Ⅰ(cinerin Ⅰ)、瓜叶除虫菊素Ⅱ(cinerin Ⅱ)、茉酮除虫菊素Ⅰ(jasmolin Ⅰ)和茉酮除虫菊素Ⅱ(jasmolin Ⅱ)6种结构相似的化合物,它们的共同特征是具有酯的结构。除了除虫菊素Ⅰ外的其他5种除虫菊素对蚊、蝇有很高的杀虫活性,其中除虫菊素Ⅱ有较快的击倒作用。化学家们在保持除虫菊素基本骨架的基础上,通过改变和简化菊酸部分的结构,先后仿制合成了一系列除虫菊素衍生物——拟除虫菊酯杀虫剂。和除虫菊素相比,拟除虫菊酯类化合物具有更高的光稳定性和杀虫效力。根据结构中是否含有氰基以及对昆虫产生毒性作用的特点,拟除虫菊酯杀虫剂可分为Ⅰ型和Ⅱ型两类[5]。Ⅰ型拟除虫菊酯杀虫剂不含α氰基,包括联苯菊酯、氯菊酯、胺菊酯等;Ⅱ型拟除虫菊酯杀虫剂含有α氰基,包括氰戊菊酯、甲氰菊酯、氟氰戊菊酯和溴氰菊酯等,拟除虫菊酯类杀虫剂自应用以来在全球杀虫剂市场中一直占据着重要位置。新烟碱类杀虫剂销售额在杀虫剂中占比18.0%~21.8%长期位居第一[6],然而有研究表明暴露于亚致死浓度新烟碱杀虫剂中会导致非靶标生物如蜜蜂的神经疾病[7],部分地区新烟碱类杀虫剂被禁限使用,为拟除虫菊酯类杀虫剂提供了机遇。

有研究发现VGSC并不是拟除虫菊酯类杀虫剂的唯一作用靶标。棉铃虫神经细胞上存在大电导钙激活钾通道(large conductance calciumactivated potassium channels, BKCa),藏媛媛等通过全细胞膜片钳技术首次记录了棉铃虫中枢神经细胞BKCa通道的电流,并分析了七氟菊酯和溴氰菊酯对BKCa通道的影响,结果发现棉铃虫神经细胞膜上表达BKCa通道,而七氟菊酯和溴氰菊酯均能显著抑制BKCa通道的峰值电流,使BKCa通道激活的电压依赖性发生改变,证实该通道是七氟菊酯和溴氰菊酯的作用靶标[57]。

4 麦蚜对拟除虫菊酯类杀虫剂的抗性机制

关于麦蚜对拟除虫菊酯类杀虫剂抗性机制的研究在现阶段并不多,这可能与目前麦蚜对拟除虫菊酯类杀虫剂仍处于敏感和低水平抗性有关。左亚运进行禾谷缢管蚜抗高效氯氰菊酯品系的筛选,筛选至20代,抗性系数增长为9.89。比较禾谷缢管蚜抗性品系和敏感品系羧酸酯酶和多功能氧化酶O脱甲基酶的活性,发现抗性品系的羧酸酯酶比活力是敏感品系的1.63倍;抗性品系的多功能氧化酶O脱甲基酶比活力是敏感品系的1.90倍,并在抗性监测中发现河南南陽禾谷缢管蚜田间种群中存在M918L突变[58]。Foster等[55]在麦长管蚜中检测到钠离子通道突变位点L1014F的存在,并证实该突变与麦长管蚜对高效氯氟氰菊酯的抗性相关。虽然麦蚜对拟除虫菊酯杀虫剂的抗性不像家蝇、淡色库蚊和埃及伊蚊等媒介昆虫那样严重,但仍存在抗性风险,麦蚜对拟除虫菊酯类杀虫剂抗性机制的研究仍处于与解毒酶活性相关的生理生化水平。

目前,棉蚜和桃蚜已经对拟除虫菊酯产生了较高的抗性,综合已有文献报道可知麦蚜存在对拟除虫菊酯类杀虫剂产生抗性突变的风险。抗性监测是了解害虫田间种群对杀虫剂敏感性最直接有效的方法。褐飞虱、棉蚜和桃蚜等很多重要害虫的抗药性监测工作也一直在开展,这些都为麦蚜抗性监测工作的开展和抗性机理的研究提供了宝贵的借鉴经验。通过抗性监测了解麦蚜田间种群对拟除虫菊酯类杀虫剂的抗性水平和相关解毒酶活性水平的变化情况,从中发掘出与拟除虫菊酯类杀虫剂抗性相关的解毒酶系及相关基因;对于田间发现的高抗种群,通过建立一定数量的单雌系品系进一步筛选出纯合的高抗品系,测定其解毒酶活性水平,并对已在其他害虫中报道的钠离子突变位点进行检测,同时可以利用转录组测序技术分析敏感品系和抗性品系的基因表达情况等。这些工作对于田间麦蚜化学防治用药策略的调整具有重要的指导作用,对于延缓麦蚜对拟除虫菊酯类杀虫剂抗性发展速率和开展麦蚜抗药性机制的研究具有重要意义。

5 展望

麦蚜种类多、分布广泛、生殖方式多样、生活史相对复杂并且具有迁飞性,这使得麦蚜的防治和抗药性研究变得比较困难。麦蚜抗性问题日趋严重,拟除虫菊酯类杀虫剂作为防治麦蚜的一类主要杀虫剂,研究明确其产生抗药性的机制对于丰富麦蚜的防治手段、提高防治效果、延缓麦蚜抗药性的发展和延长拟除虫菊酯类杀虫剂的使用寿命具有积极意义。

参考文献

[1] CONNERY J, KENNEDY T F. Grain yield reductions in spring barley due to barley yellow dwarf virus and aphid feeding [J]. Irish Journal of Agricultural and Food Research, 2005, 44(1):111128.

[2] 武银玉, 曹亚萍, 杨秀丽, 等. 麦蚜抗药性现状及抗性治理研究进展[J]. 小麦研究, 2017(2): 18.

[3] ZHANG Liuping, LU Hong, GUO Kun, et al. Insecticide resistance status and detoxification enzymes of wheat aphids Sitobion avenae and Rhopalosiphum padi [J]. Science China Life Sciences, 2017, 60(8): 927930.

[4] 于晓庆, 张帅, 宋姝娥, 等. 小麦蚜虫对六种杀虫剂的抗药性及田间药效评价[J]. 昆虫学报, 2016, 59(11): 12061212.

[5] 陈梦丽. 基于钠离子通道突变体的拟除虫菊酯杀虫剂抗性的机理研究[D].杭州:浙江大学, 2017.

[6] 李新. 拟除虫菊酯类杀虫剂研发及市场概况[J]. 农化市场十日讯, 2016(27): 1719.

[7] COOK S C. Compound and dosedependent effects of two neonicotinoid pesticides on honey bee (Apis mellifera) metabolic physiology [J/OL]. Insects, 2019, 10(1): 18.DOI:10.3390/insects10010018.

[8] FENG Xuechun, LI Ming, LIU Nannan. Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica [J]. Insect Biochemistry and Molecular Biology, 2018, 92: 3039.

[9] JOHNSON B J, FONSECA D M. Insecticide resistance alleles in wetland and residential populations of the west nile virus vector Culex pipiens in New Jersey [J]. Pest Management Science, 2016, 72(3): 481488.

[10]ZUO Yayun, WANG Kang, ZHANG Meng, et al. Regional susceptibilities of Rhopalosiphum padi (Hemiptera: Aphididae) to ten insecticides [J]. Florida Entomologist, 2016, 99(2): 269275.

[11]劉燕承. 禾谷缢管蚜抗药性及呋虫胺对其亚致死效应研究[D]. 雅安:四川农业大学, 2016.

[12]黄彦娜. 陕西关中地区禾谷缢管蚜抗药性监测及共生菌检测[D]. 杨凌:西北农林科技大学, 2018.

[13]李晓倩,张亚鑫,解晓平,等. 两种麦蚜对杀虫药剂的抗药性监测[J].大麦与谷类科学, 2018, 35(4): 61.

[14]陈澄宇,史雪岩,髙希武. 昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展[J].农药学学报, 2016, 18(5): 545555.

[15]MIAH M A, ELZAKI M E A, HUSNA A, et al. An overexpressed cytochrome P450 CYP439A1v3 confers deltamethrin resistance in Laodelphax striatellus Fallén (Hemiptera: Delphacidae) [J/OL]. Archives of Insect Biochemistry and Physiology, 2019, 100(2): e21525.DOI:10.1002/arch.21525.

[16]ZHANG Xueyao, DONG Jie, WU Haihua, et al. Knockdown of cytochrome P450 CYP6 family genes increases susceptibility to carbamates and pyrethroids in the migratory locust, Locusta migratoria [J]. Chemosphere, 2019, 223: 4857.

[17]梁晓, 伍春玲, 陈青, 等. 拟除虫菊酯类杀虫剂对赤拟谷盗 CYP4 基因的诱导表达特性[J]. 热带作物学报, 2018,39(7): 149156.

[18]YAN Zhengwen, HE Zhengbo, YAN Zhengtian, et al. Genomewide and expressionprofiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae) [J]. Pest Management Science, 2018, 74(8): 18101820.

[19]WONDJI C S, IRVING H, MORGAN J, et al. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector [J]. Genome Research, 2009, 19(3): 452459.

[20]LIAO Chongyu, FENG Yingcai, LI Gang, et al. Antioxidant role of PcGSTd1 in fenpropathrin resistant population of the citrus red mite, Panonychus citri (McGregor) [J/OL]. Frontiers in Physiology, 2018, 9: 314.DOI:10.3389/fphys.2018.00314.

[21]LABADE C P, JADHAV A R, AHIRE M, et al. Role of induced glutathioneStransferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST8 in detoxification of pesticides [J]. Ecotoxicology and Environmental Safety, 2018, 147: 612621.

[22]HU Bo, HUANG He, WEI Qi, et al. Transcription factors CncC/Maf and AhR/ARNT coordinately regulate the expression of multiple GSTs conferring resistance to chlorpyrifos and cypermethrin in Spodoptera exigua [J]. Pest Management Science, 2019, 75(7): 20092019.

[23]YING Xiaoli, CHI Qingping, GE Mengying, et al. Analysis of UB and L40, related to deltamethrin stress in the diamondback moth, Plutella xylostella (L.) [J]. Gene, 2019, 684: 149153.

[24]NIKOU D, RANSON H, HEMINGWAY J. An adultspecific CYP6 P450 gene is overexpressed in a pyrethroidresistant strain of the malaria vector, Anopheles gambiae [J]. Gene, 2003, 318: 91102.

[25]DJOUAKA R F, BAKARE A A, COULIBALY O N, et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria [J/OL]. BMC Genomics, 2008, 9(1): 538.DOI:10.1186/147121649538.

[26]STEVENSON B J, BIBBY J, PIGNATELLI P, et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed [J]. Insect Biochemistry and Molecular Biology, 2011, 41(7): 492502.

[27]GUO Qin, HUANG Yun, ZOU Feifei, et al. The role of mir2~13~71 cluster in resistance to deltamethrin in Culex pipiens pallens [J]. Insect Biochemistry and Molecular Biology, 2017, 84: 1522.

[28]DUSFOUR I, ZORRILLA P, GUIDEZ A, et al. Deltamethrin resistance mechanisms in Aedesaegypti populations from three French overseas territories worldwide [J]. PLoS Neglected Tropical Diseases, 2015, 9(11): e0004226.DOI:10.1371/journal.pntd.0004226.

[29]IBRAHIM S S, RIVERON J M, BIBBY J, et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector [J]. PLoS Genetics, 2015, 11(10): e1005618.DOI:10.1371/journal.pgen.1005618.

[30]JOUΒEN N, AGNOLET S, LORENZ S, et al. Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3 [J]. Proceedings of the National Academy of Sciences, 2012, 109(38): 1520615211.

[31]RASOOL A, JOUΒEN N, LORENZ S, et al. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan [J]. Insect Biochemistry and Molecular Biology, 2014, 53: 5465.

[32]AROURI R, LE GOFF G, HEMDEN H, et al. Resistance to lambdacyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain [J]. Pest Management Science, 2015, 71(9): 12811291.

[33]ZIMMER C T, BASS C, WILLIAMSON M S, et al. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus [J]. Insect Biochemistry and Molecular Biology, 2014, 45: 1829.

[34]劉月庆. 粘虫细胞色素 P450 的克隆和特性分析[D]. 哈尔滨:东北农业大学, 2017.

[35]SHI Li, XU Zhifeng, SHEN Guangmao, et al. Expression characteristics of two novel cytochrome P450 genes involved in fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval) [J]. Pesticide Biochemistry and Physiology, 2015, 119: 3341.

[36]MUTHUSAMY R, SHIVAKUMAR M S. Resistance selection and molecular mechanisms of cypermethrin resistance in red hairy caterpillar (Amsacta albistriga Walker) [J]. Pesticide Biochemistry and Physiology, 2015, 117: 5461.

[37]PAN Jing, YANG Chan, LIU Yan, et al. Novel cytochrome P450 (CYP6D1) and voltage sensitive sodium channel (Vssc) alleles of the house fly (Musca domestica) and their roles in pyrethroid resistance [J]. Pest Management Science, 2018, 74(4): 978986.

[38]PAURON D, BARHANIN J, AMICHOT M, et al. Pyrethroid receptor in the insect sodium channel: alteration of its properties in pyrethroidresistant flies [J]. Biochemistry, 1989, 28(4): 16731677.

[39]SCOTT J G. Life and death at the voltagesensitive sodium channel: evolution in response to insecticide use [J]. Annual Review of Entomology, 2019, 64: 243257.

[40]MACKENZIE T D B, ARJU I, POIRIER R, et al. A genetic survey of pyrethroid insecticide resistance in aphids in New Brunswick, Canada, with particular emphasis on aphids as vectors of Potato virus Y [J]. Journal of Economic Entomology, 2018, 111(3): 13611368.

[41]BALVN O, BOOTH W. Distribution and frequency of pyrethroid resistanceassociated mutations in host lineages of the bed bug (Hemiptera: Cimicidae) across Europe [J]. Journal of Medical Entomology, 2018, 55(4): 923928.

[42]GONZ LEZlCABRERA J, BUMANN H, RODRGUEZVARGAS S, et al. A single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor [J]. Journal of Pest Science, 2018, 91(3): 11371144.

[43]YESSINOU R E, AKPO Y, OSS R, et al. Molecular characterization of pyrethroids resistance mechanisms in field populations of Rhipicephalus microplus (Acari: Ixodidae) in district of Kpinnou and Opkara, Benin [J]. International Journal of Acarology, 2018, 44(45): 198203.

[44]LOPEZMONROY B, GUTIERREZRODRIGUEZ S M, VILLANUEVASEGURA O K, et al. Frequency and intensity of pyrethroid resistance through the CDC bottle bioassay and their association with the frequency of kdr mutations in Aedes aegypti (Diptera: Culicidae) from Mexico [J]. Pest Management Science, 2018, 74(9): 21762184.

[45]GRANADA Y, MEJAJARAMILLO A, STRODE C, et al. A point mutation V419L in the sodium channel gene from natural populations of Aedes aegypti is involved in resistance to λcyhalothrin in Colombia [J/OL]. Insects, 2018, 9(1): 23.DOI:10.3390/insects9010023.

[46]RASLI R, LEE H, WASI AHMAD N, et al. Susceptibility status and resistance mechanisms in permethrinselected, laboratory susceptible and fieldcollected Aedes aegypti from Malaysia [J/OL]. Insects, 2018, 9(2): 43.DOI:10.3390/insects9020043.

[47]CHEN Mengli, DU Yuzhe, NOMURA Y, et al. Mutations of two acidic residues at the cytoplasmic end of segment IIIS6 of an insect sodium channel have distinct effects on pyrethroid resistance [J]. Insect Biochemistry and Molecular Biology, 2017, 82: 110.

[48]CHEN Xuewei, TIE Minyuan, CHEN Anqi, et al. Pyrethroid resistance associated with M918L mutation and detoxifying metabolism in Aphis gossypii from Bt cotton growing regions of China [J]. Pest Management Science, 2017, 73(11): 23532359.

[49]CARLETTO J, MARTIN T, VANLERBERGHEMASUTTI F, et al. Insecticide resistance traits differ among and within host races in Aphis gossypii [J]. Pest Management Science: Formerly Pesticide Science, 2010, 66(3): 301307.

[50]MARSHALL K L, MORAN C, CHEN Y, et al. Detection of kdr pyrethroid resistance in the cotton aphid, Aphis gossypii (Hemiptera: Aphididae), using a PCRRFLP assay [J]. Journal of Pesticide Science, 2012, 37(2): 169172.

[51]MARTINEZTORRES D, FOSTER S P, FIELD L M, et al. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peachpotato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) [J]. Insect Molecular Biology, 1999, 8(3): 339346.

[52]PANINI M, ANACLERIO M, PUGGIONI V, et al. Presence and impact of allelic variations of two alternative skdr mutations, M918T and M918L, in the voltagegated sodium channel of the green peach aphid Myzus persicae [J]. Pest Management Science, 2015, 71(6): 878884.

[53]ELEFTHERIANOS I, FOSTER S P, WILLIAMSON M S, et al. Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peachpotato aphid, Myzus persicae (Sulzer) [J]. Bulletin of Entomological Research, 2008, 98(2): 183191.

[54]CASSANELLI S, CERCHIARI B, GIANNINI S, et al. Use of the RFLPPCR diagnostic test for characterizing MACE and kdr insecticide resistance in the peach potato aphid Myzus persicae [J]. Pest Management Science: Formerly Pesticide Science, 2005, 61(1): 9196.

[55]FOSTER S P, PAUL V L, SLATER R, et al. A mutation (L1014F) in the voltagegated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides [J]. Pest Management Science, 2014, 70(8): 12491253.

[56]ZUO Yayun, PENG Xiong, WANG Kang, et al. Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltagegated sodium channel genes [J/OL]. Scientific Reports, 2016, 6(1): 30166.DOI:10.1038/srep30166.

[57]藏媛媛, 盧洁, 刘艺, 等. 七氟菊酯和溴氰菊酯对棉铃虫神经细胞大电导钙激活钾通道电流的影响[J]. 南开大学学报(自然科学版), 2018, 51(1): 2633.

[58]左亚运. 禾谷缢管蚜抗药性监测及其对高效氯氰菊酯的抗药性机理初步研究[D]. 杨凌: 西北农林科技大学, 2015.

(责任编辑:田 喆)

猜你喜欢
抗药性
农业有害生物抗药性综合治理
普通大蓟马对啶虫脒室内敏感毒力基线的建立及抗性监测
山东省稻茬麦区菵草对炔草酯的抗性水平
病虫草害的抗药性及其治理措施研究
棉蚜对吡虫啉的抗药性及其抗性治理对策
褐飞虱对噻虫胺、异丙威、啶虫脒的抗药性及其增效配方筛选
禾谷镰刀菌甾醇14α脱甲基酶基因cDNA克隆及生物信息学分析
氰氟虫腙的作用机制及抗药性研究进展
烟蚜对6种杀虫剂敏感基线的建立
吡虫啉的杀虫功效