滕吉文,司 芗,王玉辰
(1.中国科学院地质与地球物理研究所,北京100029;2.自然资源部油气资源战略研究中心,北京100034;3.吉林大学,吉林长春130026;4.中国科学院大学,北京100049)
我国是一个拥有14×108人口的大国,地域广阔,但物并不博,目前我国已成为世界能源消费的第一大国,对外依存度不断攀升。2018年,石油对外依存度已达71%,天然气对外依存度已达43%[1],到2030年将上升到何种程度令人担忧。如何将能源安全保障主动权掌控在自己手中,乃是国家战略需求之必须。因为,它是科技进步、经济腾飞与社会发展以及由一个科技大国向科技强国前进的动力。
我国在油气勘探、开发的征程上经历了一个逐步深化、理解与实施的过程。这也是世界对油气勘探进程中逐步深化认识与发展的轨迹!约在20世纪30年代,油气勘探开发乃是以构造圈闭油气为导向,即是在寻找背、向斜及潜山等圈闭地质体的框架下进行的。20世纪50年代前后,我国提出了陆相生、储油气理论,在新中国建设与发展初期起到了极为重要的作用。20世纪六七十年代,则以有机质生烃与油气理论为主体,即岩相油气藏。进入21世纪后至今,则处在第二深度空间(5000~10000m)[2-9]和“连续型”油气密集型与非常规油气的发展时代[10-13],而且驱动着以前认为不可能开发的深层和致密油气藏,甚至低渗透率的岩层均可能形成一定规模化的油气藏。这便为大力扩展油气能源勘探、开发和利用开辟了新的领域。
油气勘探开发已有300年的历史,据其勘探领域可划分为构造油气藏、岩性地层油气藏和非常规连续型油气藏,也是三大发展阶段。在每一段历史发展中,我国石油和天然气勘探开发基本上都是跟随着世界上有关石油地质理论的步伐前进。应当看到陆相生油气理论对我国油气发展起到了极为重要的作用,首先是大庆油田的发现为解放后新中国初期建设提供了能源新径。近半个世纪的油气勘探和开发实践,打破了欧美一致认为中国贫油和无油气的信条,相继在我国陆相、海相沉积建造中发现了一批批中型、大型油气田。
显然,在上述每一个发展阶段的油气勘探、开发、利用的过程中,对油气的生成、聚集、分布等认识均有重大进步,促进了油气在我国建设事业中的作用发挥,更好地满足了人民生活的需求。
在全球的油气发展进程中,特别是非常规油气存储为世界能源的供给提供了可持续发展的新园地。在我国能源的勘探、开发进程中,人们必须清晰地认识到我国少油、缺气而富煤。尽管我国煤炭需求暂时疲软、限产,然而至今煤炭作为一种永继的能源,在我国能源结构中至今仍占65%左右的份额,如果将我国能源资源保有经济可供储量折合2150×108t油当量[14],则煤炭占比超过90%,油、天然气占比却很小,这表明我国的能源配置与欧美等国以油气为主导的能源结构不同。对于一个科技大国,并向科技强国挺进的中国来讲,不仅这样的结构很不均衡,而更为重要的是能源安全保证问题。随着高新科技的发展和应用,煤炭的清洁、高效利用一定会提上日程,特别是煤炭燃烧过程中CO2的捕获、煤制油、制气和煤化工的发展以及煤炭储地深层燃烧及发电等的转化效应,当必会给煤炭带来新的更大的发展机遇。我国的煤炭资源量高达6×1012t,通过一系列技术改进、转化,必为我国“永不衰竭的主体能源”[3,15]。
基于我国过去、现在能源的潜能与需求,预计在未来的整体能源结构中,若以10年为一个阶段,则2010年、2020年、2030年和2040年这4个阶段的石油需求量分别为69×108,123×108,189×108,252×108t油当量,天然气需求量分别为101×1010,305×1010,685×1010,1170×1010m3,原煤需求量分别为536×108,921×108,1362×108,1789×108t,天然铀需求量分别为2×104,10×104,34×104,70×104t,所有这些均为我国快速工业化、经济腾飞与建设世界科技强国必须保障供给的核心能源。为此,在当今世界纷争的格局和科技发展大潮中,在多元化利用世界能源的同时,必须立足于本土,构筑综合能源有机匹配体系,建设起安全的、稳定的,且可保障长期供给的各类能源的战略后备基地刻不容缓!
面对当今世界油、气、煤等潜在能源的分布和我国快速发展的需求,则必须针对我国领土、领海地下各类能源存储的潜力,勘探和开发理念、方法和技术水平,在发展中加深理解,在理解与践行及示范中创新。因为跟踪世界必须有边界条件而不是照搬或终极。显然,如何从实际出发,从目标出发,从可能出发,厘定我国能源匹配与组合的路线乃是关系到整个国民经济可持续发展和能源合理结构的关键所在。为此,概括起来本文将讨论以下3个方面的问题:①第二深度空间(5000~10000m)油、气化石能源乃本世纪中叶前后勘探、开发和供给的重要领域;②在我国非常规油气中,页岩油气藏在示范研发与最大限度减少污染的同时加强理论、技术研究是发展的必然路线;③煤炭的高效利用和能型转化,如煤制气、煤制油、地下燃烧煤产气发电和煤化工并举乃我国能源之本!
随着第一深度空间(<5000m)油气田的勘探、开发和消耗,油气的潜在资源量在逐减,已远不能满足我国国民经济持续发展的需求。尽管在不同地区尚可发现新油气藏,但其量毕竟很有限,而当今油气供需的对外依存度逐增,能源安全形势日趋严重。可是,当今常规石油能源的采收率依然尚低(约为70%),如何提高采收率是研究重点之一。同时,地壳内部陆相、海相沉积建造中,中新生代一直到古生代地层中都存在着丰富的潜在油气藏[4-5],故向第二深度空间要油、要气是我国,乃致世界能源勘探、开发和消耗的必然走向!显然,至少在本世纪中叶乃至下叶以后,常规化石能源必是主控能源。
早期油气勘探与开发深度一般不超过3000m,称为第一深度空间的油、气。世界上第二深度空间的油气勘探始于20世纪50年代[16],当时称为深部或超深部。据统计[17-20]:目前已有超过1000个油、气田的含油、气储层深度位于4500~8103m,其石油储量占全球的7%,天然气储量占全球的25%。美国1956年在西内盆地阿纳达科凹陷发现了深层气藏,埋深达4663m,为当时之最深;1977年在阿纳达科凹陷发现更深的气藏,达7663~8083m。前苏联24个深层含油、气盆地中,储层埋深大于6000m的盆地占比为75%,其中4个探明储量达到工业级油、气藏[21]。当前油气勘探由陆上向海上进军,由浅层向第二深度空间(埋深大于7500m)发展,这也离不开深层钻井和完井等技术的促进[14]。表1给出了全球七大深层油、气产区的油气探明和控制(2P)可采储量分布,可见,第二深度空间的油、气勘探潜力巨大。
国外深钻井主要分布于北美洲、中东及前苏联:北美洲如Gulf Coast、Anadarko、Permiao、California、Alasla、Rocky Mountain等盆地,中南美洲如Santa CvusTarij、Maracaiho、Sureste等盆地,前苏联如Vilguy、Dineper-Donets、Suvith Caspian、North Csapian、Middle Caspian、Amn-Darya、Fergna Valley、Akuban等盆地,欧洲如Aqartaino、P Vally等盆地,中东如Omen盆地等,非洲如Sirte盆地等[22]。
表1 全球七大深层油、气产区2P可采储量[14]
美国已有深钻井20715口,其中,深度大于4500m的占比为54.7%,产层深度大于6000m的产井占比为4.7%,52口钻探深达7500m[23]。俄罗斯古老克拉通地区气藏及凝析气藏产层主要分布在4000~6000m深度范围。墨西哥湾盆地外带的含油、气相带位于约6000m深处。
我国油、气勘探目标已逐步转向盆地更深层的沉积建造,即第二深度空间,主要分布于西部、东部、中部几个典型盆地。
塔里木盆地目前油气储层钻井测试已完成156口,储层底界超过5000m深度的占比为33.3%。中石油完成了7口大于7000m的深井,已完钻的深度在5000~7000m的深钻井超过450口。塔深1井深度达到8404m,深部奥陶系到三叠系厚度为600m左右的白云岩中发现液态烃,产微量气。康东坳陷的博孜1井为塔里木盆地最深的气流井,7014~7084m深井段属典型的碎屑岩凝析气藏。托普39井钻井深度已达8800m,是塔里木盆地最深的工业油流井,主要产油井段深度为6950~7110m[24-27],为孔洞型储层,能形成有效的深部储集体。准噶尔盆地开展了7000m以下的深部钻探工作,已初步见效。
渤海湾盆地渤中凹陷为最大的富生烃凹陷,面积达8660km2,其中沙河街组烃源岩最大埋藏深度达9000m,有机质类型好;东三段平均埋深达6000m,处于成熟-高成熟阶段。冀中坳陷1992年以前已有176口测井深度大于4000m、获得工业油气产出的深测井,占比为20%。黄骅坳陷主要包括5个生烃凹陷,属持续埋深型生烃凹陷。南堡凹陷主要沉积中心如北堡、高柳,沉积厚度为3800~4400m,储集层深度超过6000m,富含烃源岩有机质。考虑到我国目前实际钻探技术水平,将我国东部含油、气盆地的深层勘探深度界定在6000m以下是比较科学的。
四川盆地及其周边地区,下志留统龙马溪组底界古埋深大于6500m,下寒武统牛蹄塘组底界古埋深大于9000m。龙马溪组底界古埋深向盆地东南缘和北缘明显加深,最大埋深处位于川西—川北前陆盆地,深达11000m,最小古埋深处在川中—川西南宜宾—自贡—遂宁一带,也接近8000m[28]。普光气田、元坝气田位居我国前三位的大型海相气田,前者形成经过了3个油气运移期,在3625m深度为进油期,在5292m深度进行第2次运移,在6958m深度进行第3次运移;后者测井钻深大于7300m时发现高产气流。显然,我国四川盆地第二深度空间的页岩气有很大的潜力[29-37]。不过,必须清晰地认识到我国的页岩气与美国页岩气在质与量上均存在明显差异。
总之,当今我国油气处在关键时刻,必须清晰地认识到,随着勘探技术的提高,至少在21世纪中下叶时期,乃至更长时期,第二深度空间(5000~10000m)的常规油气勘探、开发、利用确实仍占有极为重要的地位,且已成为我国能源供给的必然途径。强化第二深度空间油气勘探与开发已刻不容缓[2,5,7,9,15,38-42]。
在世界石油和天然气能源发展的进程中,特别是1995年美国地质勘探局(USGS)的SCHMAKERSCHMAKER[10,43]和GANTISR等[11]提出“连续型”油气聚集的概念,开启了非常规油气的新认识、新纪元。2002年LAW[44]提出了非常规油气的构思;对Barnett页岩储集层有机质微空观孔喉舌特征的研究[45-47],特别是微纳米孔喉结构模型的提出,突破了页岩、致密砂岩无储层空间的约束[10,43,48-50],揭示了非常规油气“连续型”聚集的规律性认知,现已成为油气开发的前沿。这为21世纪油气勘探开发与创新带来了新的机遇。
非常规油气资源是未来油气勘探的战略性领域。据美国联邦地质调查局和美国能源部统计,目前全球非常规石油资源规模达4495×108t,与常规石油资源基本相当,全球非常规石油产量快速上升,2008年较2001年增长近一倍,已经超过6000×104t;全球非常规天然气资源规模达3922×1012m3,是常规天然气资源的8倍,非常规天然气产量快速上升,已经超过5600×108m3。因此需要加强在理论、技术方面的突破,强化勘探与开发的深度,并在查明存储及潜力的前提下逐渐形成规模与产能。在非常规油气中,尽管包括诸多的内涵,如致密油气、煤层气、页岩油气等,并逐为石油界所瞩目,而当今应当重视的实属页岩油气。因为过去认为不能作为储层的致密岩系或几乎无渗透性的封隔层系当今已均可成为具有可开发价值的储集层,且分布广泛。
据推测世界页岩气资源量达456×1012m3,主要分布于北美、南美、前苏联、中国、中亚、中东和北非等地区(表2)。
2.1.1 美国页岩气的发展
1976年美国能源部、能源研究和开发署(ER-DA)、国家地质调查局、州级地质调查局等多家机构联合发起,实施了针对页岩气研究与开发的东部页岩气工程计划(EGSP),这显著扩大了页岩气勘探开发范围,促进了页岩气产量大幅度增加,催生了一批科研成果,为美国页岩气的发展奠定了基础。1998—2007年美国非常规天然气步入快速发展阶段,产量增加65%。2015年年产量达4250×108m3,占全球页岩气产量的90.56%[52]。
表2 全球页岩气资源分布[51] 1012m3
美国页岩气主要产于泥盆系、石炭系、侏罗系,工业开发页岩气主要分布于中西部地区的古生界、中生界及新生界海相页岩层系中,包括阿巴拉契亚、密西根、伊利诺斯等盆地,如威利斯顿Bakken、圣胡安丹佛、Barnett、Woodford、Marcellus和Haynesville页岩等,产量可达930×108m3[45-46]。
2.1.2 美国之外的几个主要国家页岩气的发展
加拿大是继美国之后成功开发页岩气的第2个国家,目前其页岩气供应量已占据北美市场的半壁江山,其页岩气资源主要分布于不列颠哥伦比亚省、阿尔伯塔省、萨斯喀彻温省、南安大略地区、魁北克低地以及滨海诸省。不列颠哥伦比亚省东北部的霍恩河盆地将成为北美第三大页岩产气区,仅次于美国的Marcellus和Haynesville页岩气藏。
欧洲非常规天然气勘探开发主要集中在波兰、奥地利、瑞典、德国和英国等,其非常规天然气产量据预测2030年高达600×108m3/年,其中波兰产量最高。2009年在德国国家地学研究中心(GFZ)启动了“欧洲页岩气研究计划(GASH)”,旨在通过收集欧洲各地区的页岩样品、测井试井和地震资料,建立欧洲页岩数据库,并与美国含气页岩进行对比研究。
澳大利亚页岩气可开采资源量约为11×1012m3,主要分布在Cooper,Perth,Amadeus,Georgina和Canning等盆地。依据20%采收率的保守估计,Perth盆地可采页岩气为1.67×1012m3[53-55]。澳大利亚地层的钻井、完井以及压裂成本高于美国的大多数页岩气田,挑战性大,商业生产需要在长水平井完井作业后进行大规模水力压裂。
据估计,我国页岩气可采资源量可达26×1012m3,与美国大致相当[56-58],主要分布在鄂尔多斯、四川、松辽、渤海湾、塔里木、准噶尔、吐哈、江汉等含油气盆地[29,59-64]。页岩地层既有有机质含量高的古生界海相页岩、海陆交互相页岩,也有有机质较丰富的中、新生界陆相页岩[62,65]。主要远景区位于川南、川东、渝东南、黔北、鄂西等上扬子地区。
目前我国页岩油、气勘探开发总井数达到63口,在泌阳凹陷、东濮凹陷、辽河坳陷及济阳坳陷等中新生界陆相泥页岩层系获得了工业油流。但是我国的页岩气勘探开发面临着:①与美国页岩、加拿大油页岩和致密砂岩等世界页岩气强国相比,在页岩类型、含气丰度和采掘条件等方面均存在较大差异;②多处发现页岩气显示,但不一定有工业价值;③气含量是核心问题;④裂缝,水平钻井技术、用水量与产能是关键;⑤液体返回地面的污染程度与防范;⑥经济投入与效益。
20世纪40年代,德国学者认识到煤层中存在大量天然气,且可成为工业气田[66],之后,这大为促进了煤气工业的发展,并发现了一系列大型煤层气田。当今,煤层气在煤储层中主要有3种形式的存在相态,即吸附相、游离相和溶解相,这3种相态的甲烷气体处在一个动态平衡中。当煤层中的流体压力降低时,以物理吸附的形式吸附在煤基质空隙内表面的煤层气发生解吸作用变为游离态煤层气,而后这游离态的煤层气经过煤基质扩散渗流进入天然裂隙,这时天然裂隙中呈游离态的煤层气通过渗流抵井筒而产出[67-72]。煤层气是非常规天然气勘探与开发的重要领域,从机理上向斜构造对煤层气富集十分有益[73]。煤系天然气中有非常规“连续型”和常规圈闭型两种主要类型,它们在聚集形态、机理、分布、勘探和开发方式诸多方面均具有明显差异。
根据国际能源机构[52]的统计数据,估测俄罗斯、加拿大、美国、中国、澳大利亚、英国、哈萨克斯坦等国家是全球煤层气资源量较大的国家,其资源量可达256.1×1012m3。在这些国家中俄罗斯的煤成气资源量居世界第一位[74-76]。
在全球范围内的天然气储量中,煤成气占有重要地位,截止2017年底世界上发现煤成超大气田13个,总原始储量49.99528×1212m3,为该年世界总剩余可采储量193.5×1012m3的25.8%。2017年世界有产气大国15个,共产气28567×108m3,其中6个以产煤成气为主的国家共产气11369×108m3,占产气大国总产量的39.8%。
世界主要产煤国都十分重视开发煤层气专项勘探和测试,美国、英国、德国、俄罗斯等国煤层气的开发利用起步较早。2001年美国天然气研究所公布美国煤层气资源为21.19×1012m3。20世纪70年代至80年代初,美国开始进行地面煤层气开采并获得成功,从1983年到1995年,美国煤层气年产量从1.7×108m3猛增到250.0×108m3,迅速形成了产业化规模。2005年产量已超过500×108m3,占美国天然气总产量的8%~10%,成为美国重要的能源资源[76]。加拿大从1978年开始进行煤层气开采试验,2002年煤层气年产量约1.0×108m3,2004年增加到15.5×108m3,预计2020年可达到207×108m3,2024年将达到310×108m3[77]。
我国煤层气开发起步较晚,自1994年开始煤层气专项勘探以来,已在沁水盆地实现了煤层气工业产量,目前我国正步入煤层气开发突破阶段,2010年我国煤层气生产能力达到25×108m3,将实现我国煤层气产业的快速发展。下面分别讨论发展概况、深度影响和分布[76,78]。
3.2.1 我国煤层气勘探与开发发展迅速
1978年,我国天然气地质储量为2284×108m3(其中煤成气203×108m3),年产气137×108m3(其中煤成气3.43×108m3);至2016年底,我国天然气地质总储量为118951.2×108m3(其中煤成气为82889.32×108m3,占全国的69.7%),年产气1384×108m3(其中煤成气742.91×108m3,占全国的53.7%)。天然气储量、煤成气储量、天然气产量和煤成气产量分别是1978年的52倍、408倍、10倍和216.6倍,使中国从贫气国迈入世界第6产气大国[79]。
3.2.2 我国煤层气储藏盆地的技术可开采储量
塔里木盆地库车凹陷至今已发现煤成气田和凝析气田12个,煤成油田2个(依奇克里克,大宛齐[80-81])。泌水盆地、吐哈盆地、准噶尔盆地和鄂尔多斯盆地的煤层气的可开采储量均大于10000×108m3,总计可采储量为85825.9×108m3,占总量的61.8%,其它盆地为53150.8×108m3,占总量的38.2%[76]。
鄂尔多斯盆地煤层气技术可开采资源量最大,为42346.78×108m3,占全国煤层气技术可开采资源量的30.42%;泌水盆地煤层气资源量为15939.60×108m3,占全国可开采资源量的11.47%;吐哈盆地排第3位,为14275.56×108m3,占全国可开采资源量的10.27%;准噶尔盆地煤层气资源量为13263.96×108m3;松辽盆地煤层气资源量仅为12.60×108m3[82]。
3.2.3 鄂尔多斯盆地苏里格煤成超大型气田
鄂尔多斯盆的气田至2017年底历年共产气3783×108m3,其中煤成气占90%以上,其中苏里格气田占鄂尔多斯盆地历年总产气量的41.3%,占全国年产气量的14.2%。苏里格超大型气田的勘探和开发对中国成为世界第6产气大国起到了重大作用。伊陕斜坡西南部油区深部具有有利的成藏条件,今后应加强煤成气的勘探开发[83-90]。
3.2.4 煤层气优势地域
煤层气的勘探、开发和利用已为我国能源中不可轻视的工作。应当说,我国煤田区确实存在相应的煤层气。为此,在煤成气田的分析中首先要服从于煤炭存储的分布,我国的华北、华南当属首位,这两个区域可占比81.74%,更为重要的是在2000m乃至深层范围内尚有待勘探、开发和发现的大型、超大型煤田,且更具潜力。
一个非常重要的问题是,四川已在第二深度空间(5000~10000m)发现了龙岗和元坝两个煤层气大气田,除新深1井和元坝222井产油型气,其它均产煤层气[79]。为此,无论在四川盆地,还是在我国西部、东部等地区,对页岩气,特别是煤层气的勘探与开发必须十分重视第二深度空间的深地。
我国能源消费结构中,煤炭比重远高于其它国家。据统计,1990年、2002年、2005年、2011年和2013年,我国煤炭消费在能源消费构成中所占比例分别为76.2%,68.0%,70.8%,77.8%和66.0%,至今仍占到整个能源结构配置中的65%左右。我国以煤为主的能源结构短期内难以改变,现有能源资源的分布决定了我国目前以煤炭为主体的能源消费相关结构。
煤炭为我国经济快速发展与工业化进程提供了能源保障,但给生态环境带来了问题。必须制定出适应我国国情的煤炭工业发展战略,实现煤炭资源的多元化高效利用,达到在经济发展中煤炭工业与生态环境的平衡。我们必须发展洁净生产技术、洁净加工技术、高效洁净转化技术、高效洁净燃烧与发电技术、燃煤污染排放治理技术等洁净煤技术[3-4,15]。另外,在深部煤炭燃烧气化输气方面,德国、加拿大、波兰、俄罗斯、美国、英国等已进行了场地试验,取得了一定成效,有了一定的技术积累[91-100],值得借鉴,我国应加大研究。
当今世界人口增长、经济腾飞,人民生活水平不断提升,对能源的需求日益剧增。我国目前面临着油气能源对外依存度不断攀升的严峻挑战格局,2018年油、气对外依存度已分别达到71%和43%。然而一次性化石能源的消耗当比稳定增速,特别是第二深度空间(5000~10000m)的潜在油气勘探、开发和利用必须强化。与此同时,在非常规油气资源快速发展的今天,对我国来讲重点应放在煤层气、页岩油和页岩气上,特别是前者。基于我国缺油、少气、富煤的总体格局,在高效、清洁、低碳、安全利用的进程中煤炭的转化潜能必将是能源战略长远思考的必然选择,潜能是巨大的。为此,在本世纪中叶前后,常规和非常规的能源同步发展路线图是适宜于国家能源战略需求的。切莫一时“脑热”,也不能只是“跟随”世界大潮,而是要遵循国情和理念,基于不同种类能源发展的边界条件和目标“函数”去创造我国能源的未来。
为此,我国能源在战略上必须是以我国实际家底为基石,对引进理念、技术的真正理解和消耗,并在多元利用世界能源的同时,强化立足本土并创建中国能源的合理科学配置与发展走向,依据当今的技术水平及能力,存储条件及开发利用的分维、建立起安全的、稳定的且可保障长期供给的能源战略后备基地。
1) 强化第二深度空间(5000~10000m)常规和非常规油气能源勘探、开发和利用的并行路线图,主指:①我国陆相、海相,即双相沉积建造潜力巨大,是本世纪中叶前后常规油气勘探和开发中的重要能源;②非常规油气中的页岩气乃能源勘探与开发的重要导向,应量化研究,科学计算客观资源量(包括数量和质量),并加强示范研究,且在将污染和投入均减少到最低限度情况下践行和大力开发。
2) 强化第二深度空间煤炭(500~2000m)和煤层气(5000~10000m)的勘探、开发和利用。①我国2000m以浅煤炭资源潜力巨大,是我国能源结构中的主体,是我国能源安全长期保障的基石。②煤炭生产过程与其所形成的大量天然气煤层气是我国能源的未来。我国煤层气资源量居世界前四位,但勘探程度、技术水平和工艺水平均尚低,在技术引进的过程中必须加强高新技术投入和创新,以达大力勘探、开发和提高产能。③煤炭高效利用与转化乃必然轨迹,煤制油、煤制气、地下燃烧发电、向地面输电、输气和煤化工多样化等技术及工艺过程已基本可行,应实施与发展。
3) 扎实加强油、气、煤勘探、开发和高效利用的理论、技术、产能提升的基础研究,并从我国的理念、技术、产能提升的基础上探求新路、从我国实际出发创新我国能源未来。①大力引入和应用国内外相关学科的高新技术成果,以达最大限度地减轻能源开采过程中的各种对环境的破坏、污染并强化示范研究,为人民营造一个良好的生活与生存空间。②我国未来能源结构、能源开发利用和潜力要从建设世界能源科技强国出发,奋力创新。因为,理念、方法、技术乃致他人的经验的引进不等于引进了创新思维,更不等于引进了创新能力。在多元化共享世界能源的同时必须立足本土,建立起安全的、稳定的且可保障长期供给的能源战略后备基地及人才。
4) 我国能源匹配的基本模式应为“第二深度空间常规油气”+“煤层气与煤能型转换”+“非常规页岩油气”。