陈敏
温州市七都小学
六年级“方程”单元教学内容的安排和数学的设计是在继承传统优势的基础上,从便教利学出发,着眼于学生继续学习,加强了学生的自主探索,注重学生对方程思想方法和价值的感受和体验。突破了传统教材先学解方程。再利用解方程来解决实际问题的做法,把列方程解决实际问题和解方程安排在一起进行教学,使学生在列方程解决实际问题的过程中学习解方程。教师在解读教材,研究教法,学法,具体教学中可从以下几个方面认真把握。
小学阶段所学的简易方程包括ax±b=c和ax±bx=c这两类方程。小学阶段解这类方程是以四则运算中各部分之间的关系来解答的,要与中学解一元一次方程的方法区别开来。教学中要认真复习四则运算中各部分之间的关系,由易到难地进一步掌握简易方程的解法。如果出现形如ax±b=c的方程,启发学生把原方程变形为ax=c的形式,再通过乘除运算法则求解。教学时可以先给出“过渡题”再引出问题,启迪学生“拾级而上”。例如,过渡题:10+()=50例题:10+2x=50学生不难从过渡题获得启发,得到2x相当于(),那么把2x看作一个数,就可以先求出来,然后再求x等于多少。对于其解答稍有困难,此时教师提问:“按照运算顺序解这道方程应先算什么?”(6×3)“把2x看作什么?”(未知数)“2x在整个方程中处于什么位置?”(2x是减数)接着教师启发引导学生把方程解完,根据条件引导学生列出方程,然后让学生自己解方程。对形如ax±bx=c的方程可借助形象具体的实例,使学生从直观上理解它的含义,进而掌握解法。出示课本中的例五,引导学生观察图。教师讲述:要求一天共运土多少吨,必须知道上午运的吨数和下午运的吨数。但题目没有直接告诉,只告诉每车运x吨,上午运了四车,下午运了三车。“如何用含有字母x的式子表示上午运的吨数和下午运的吨数呢?”(4x和3x)“又如何表示一天运的吨数?”(4x+3x)。4x表示四个x,3x表示3个x;4x+3x表示四个x加三个x。提问:“四个x加三个x等于多少个x?”(七个)。教师板书4x+3x=7x。出示课本中例六,引导学生观察并思考如何解方程,根据学生思考后的回答,教师可作启发性的提问:“7x加9x等于80,表示几个x等于80?”(16个x等于80)。教师讲述,这是一道含有两个相同未知数的方程,在以后学习列方程解应用题时,还会出现类似的方程,解这种类型的方程时一般是通过加或减的计算,先把它变成只含有一个未知数的方程,即ax=c再往下解。现在,学生就会很容易地解形如ax±bx=c的方程了。
能解方程和会解方程是学生的基本技能,也是学习能力。教师在帮助学生掌握教材提供的利用等式的性质解方程的基础上,教师要尊重学生解决问题的实际情况,尊重他们所看好的策略和方法,从有利于学生思维、有利于学生解决问题和有利于学生发展的角度出发,正确地对待学生不同的思考和运用不同的方法解方程。
既然让学生在列方程解决实际问题的过程中学习解方程,那么,解方程的学习也应该和数量关系的分析联系起来。学生根据不同的数量关系可以列出不同的方程,也反映出学生在解方程时也会有各自独到的思考过程,我们应该尊重不同的思考。并帮助他们理清思路。同时也让学生感受到解方程在解决实际问题过程中的价值。教学中,我们要充分尊重教材,领会教材的意图,帮助学生完成必需的学习任务。在此基础上,我们就要结合学生学习实际,从利于学生学习数学、利于发展学生数学思考,促进学生有效发展的角度,科学地、综合地、全面地考虑,通过创新教学,使教学真正扎实、有效和有可持续发展性。
我们要重视学生的数学体验,在解方程和列方程解决实际问题的过程中,进一步感受方程的思想方法和价值。在教学解方程时,根据实际问题,通过分析数量关系列出方程,再引导学生探索并掌握方程的解法。这样即使学生体会到方程是解决实际问题的需要,又能使学生认识到列方程需要依据数量之间的相等关系。
长期以来,在小学阶段教学简易方程,方程变形的依据总是根据运算之间的关系,这实际是用算术的思路求未知数。而在新课程标准指导下的解方程,则要求学生探索、理解等式的基本性质,再应用等式的基本性质解方程。为有效避免旧教法中同一内容两种思路、两种算理解释的现象。在教学解方程之前,教师应利用一两个课时,不断渗透关于四则运算之间关系的知识,强化学生对四则混合运算的重温与知新。在学生掌握了用代数思想解方程之后,再向他们介绍用算术思想解方程。并通过对比两种方法,使学生发现两种方法之间的内在联系,从而实现对代数思想解方程的更深认知。如教学x-8=12,学生自己做出了x=12+8,教师又引导学生理解了x-8+8=12+8。之后,教师要有意识地作沟通:你们觉得两种方法有什么相同之处吗?学生会发现,两种方法都有12+8。学生还会发现,实际上x-8+8=12+8,-8+8抵消了,就剩下x=12+8,这也就变成了第一种方法。此时,学生马上就会意识到,实际上两种方法有“异曲同工”之妙。
解方程和列方程解决实际问题的教学,是通过组织有效的数学活动,使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象成式与方程的过程,积累将现实问题数学化的经验,进一步感受方程的思想方法及价值,发展抽象思维能力和符号意识。而学生在积极参与数学活动的过程中,也养成独立思考,主动与他人合作交流、自觉检验等习惯。由解方程和列方程解决实际问题获得的成功体验,也为学生增加了探究问题的好奇心和进一步树立学好数学的自信心。