机场出租车载客问题的研究

2020-09-10 15:23王彤
看世界·学术下半月 2020年2期
关键词:排队论线性规划相关性分析

摘要:出租车司机在送客到机场后可以在机场等候载客或者放空返回市区,对此该如何决策出最优方案。首先,我们运用了排队论和决策优化的知识, 构建了选择决策模型和方案 A 的等待时间单服务台单队列排队模型。通过选择决 策模型比较方案 A 和 B 的收益,最终让司机选择收益多的方案。

关键词:排队论;MATLAB;相关性分析;线性规划;选择决策模;SPSS

模型建立与求解

问题一

选择决策模型

车公司缴纳的费用(选择方案 A 的出租车司机从排队到送乘客到达目的地的总时间T乘以单位时间出租车公司收取的费用M2)基于上述列出如下公式:

对于选择 B 方案的出租车司机而言,其收益(EB)的组成包括返回市区后 在市区载客所得打车费( RB),可能损失的潜在载客收益(返回市区的时间T2 乘以单位时间的时间成本M1)、燃油费(FB)和出租车向出租车公司缴纳的费用T(选择方案 A 的出租车司机从排队到送乘客到达目的地的总时间 乘以单位时间 出租车公司收取的费用 M2)基于上述得到如下公式:

再依据实际数据,代入上述公式分别得出方案 A 和方案 B 的收益,计算出Ea, EB的大小进行比较,收益大的即为我们选择的方案。 基于排队论得到的方案 A 的等待时间(M/M/1//FCFS)排队模型1

通过Python收集了河南郑州新郑机场的航班信息2以及出租车的实时动 态信息3,通过调查与分析,我们决定采取以半个小时为一个时间节点的方案,统 计出了每半个小时内进入蓄车池车辆的数量以及航班数量,时间长度为早上 8:00 到 0:00,以乘客预估人数为自变量 x,此前半小时内出租 车进入蓄车池的数量为因变量 y,我们利用 spss 软件画出了其散点图,发现其 有比较强的线性关系。接下来我们用 MATLAB 里的 cftool 工具箱对两变量进行了拟合由图可见 x,y 变量之间符合关系式:y=0.0155*x+17.95 其中擬合优度=0.7934,可知此次拟合效果很好

由此我们可以根据航班数量预估乘客的数量得到与选择 A 方案的出租

车到 达率 λ的关系即λ=(0.0155*x+17.95)/30

从上述数据可以看出在 18:00 点之前乘客到港人数相对较多,在蓄车池内的车辆也相对较多,但乘坐出租车的乘客相对较少,出租车司机排队时间长,亏损 大于收益,而直接空载回市区反而能盈利,所以此时间段内应选择 B 方案,即直 接放空返回市区拉客。18:00 点之后,乘客预估到港人数相对较少,蓄车池内车 辆也相对较少,但由于已到晚上,乘坐出租车可能会更加方便,所以这段时间内 乘坐出租车的乘客相对较多,出租车司机排队时间短,可以盈利,所以此时间段 应该选择 A 方案,即在机场拉客再返回。

参考文献:

排队论模型及求解

https://blog.csdn.net/sunyueqinghit/article/details/815621

382郑州新郑国际机场官网 http://www.zzairport.com/c/list.php?tid=14

3郑州机场车辆管理 http://www.whalebj.com/xzjc/default.aspx&apos 4

作者简介:

王彤(1999.04-),男,天津人,本科,研究方向:自动化专业。

猜你喜欢
排队论线性规划相关性分析
新课程概率统计学生易混淆问题
基于多枢纽轮辐式运输网络模型的安徽省快递网络优化
校园智能快递柜服务系统的优化研究
线性规划常见题型及解法
上市公司财务指标与股票价格的相关性实证分析
淘宝星店成长中的粉丝力量
中国城市化与经济发展水平关系研究
排队论在医院门诊收费管理中的应用
基于排队论模型分析交通事故对城市道路通行能力的影响