唐昊 陈顺有 卢晓坤 陈福明
【摘要】 目的:探討SDF-1/CXCR4介导通路对小鼠骨折愈合的影响。方法:40只C57BL雄性小鼠随机分为抑制组与对照组,采用切开暴露股骨中段制造股骨干横行骨折,插入髓内针制作小鼠骨折愈合模型,抑制组小鼠每次每只每12小时1.25mg/kg局部皮下注射CXCR4抑制剂AMD3100,对照组小鼠注射等量磷酸缓冲盐溶液;在模型构建后第1、3、5、8周处死小鼠,采用放射学X线片观测其影像学改变;采用免疫组织化学观测指标SDF-1、ERK、AKT在组织中的表达水平;采用实时定量荧光PCR观测指标COL1、COL2、CXCR4、VEGF在组织中的表达水平。结果:小鼠单侧开放性股骨干横形骨折+髓内针固定模型构建成功,适用于小鼠骨折愈合的研究。两组COL1、CXCR4、VEGF在组织中表达均逐渐上升,至第3周时达到高峰,后逐渐下降,且同时间对照组均高于抑制组,差异均有统计学意义(P<0.05);两组COL2均在第1周即达到高峰,后快速下降,且同时间对照组均高于抑制组,差异均有统计学意义(P<0.05)。两组SDF-1、ERK、AKT在组织中表达均逐渐上升,至第3周时达到高峰,后逐渐下降,且同时间对照组均高于抑制组,差异均有统计学意义(P<0.05)。结论:在小鼠中抑制SDF-1/CXCR4通路将会延缓骨折愈合。
【关键词】 骨折愈合 AMD3100 SDF-1 CXCR4
doi:10.14033/j.cnki.cfmr.2020.19.003 文献标识码 A 文章编号 1674-6805(2020)19-000-04
Effect of SDF-1/CXCR4 Mediated AKT and ERK Pathway Inhibition on Delayed Fracture Healing in Mice/TANG Hao, CHEN Shunyou, LU Xiaokun, CHEN Fuming. //Chinese and Foreign Medical Research, 2020, 18(19): -9
[Abstract] Objective: To investigate the the effect of SDF-1/CXCR4 pathway on fracture healing in mice. Method: A total of 40 C57BL male mice were randomly divided into the inhibition group and the control group. All mice operated by exposing the middle part of femur and making transverse fracture of femoral shaft, inserting intramedullary needle to make model of fracture healing in mice. The inhibition group was injected CXCR4 inhibitor AMD3100 1.25 mg/kg every 12 hours at a time by partial subcutaneous. The control group was injected with the same amount of phosphate buffer solution. The mice were sacrificed at week 1, 3, 5 and 8 after model construction, and radiological X-ray was used to observe the imaging changes. The expression levels of SDF-1, ERK and AKT in tissues were used as immunohistochemical observation indexes. Real-time quantitative fluorescence PCR was used to observe the expression levels of COL1, COL2, CXCR4 and VEGF in tissues. Result: The model of fracture healing in mice was established successfully by unilateral open transverse fracture of femoral shaft+intramedullary needle fixation. The expressions of COL1, CXCR4 and VEGF in the tissues of the two groups increased gradually, reached the peak at week 3, and then decreased gradually. In the same period, the control group was higher than the inhibition group, the differences were statistically significant (P<0.05). The COL2 in both groups reached its peak in the first week, and then decreased rapidly. In the same period, the COL2 in the control group was higher than that in the inhibition group, the differences were statistically significant (P<0.05). The expressions of SDF-1, ERK and AKT in the tissues of the two groups increased gradually, reached the peak at week 3, and then decreased gradually. Moreover, the expression of SDF-1, ERK and AKT in the control group were higher than those in the inhibition group at that time, the differences were statistically significant (P<0.05). Conclusion: Inhibition of SDF-1/CXCR4 pathway in mice will delay fracture healing.
[Key words] Fracture healing AMD3100 SDF-1 CXCR4
First-authors address: Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
随着年龄的增长、骨质的疏松,骨折的发生率将逐渐增高。根据流行病学调查,在中国,全年龄骨折发病率为3.21%,由此,可推测大约有4.39亿人发生过骨折[1]。骨折的成功愈合依赖于炎症、血管形成、软骨形成和成骨细胞的募集、迁移和归巢[2]。有文献[3]指出,将小鼠CXCR4基因敲除,在骨折愈合早期骨与血管新生都会下降。因此,SDF-1/CXCR4通路可能参与骨折愈合和血管新生。本实验旨在探究SDF-1/CXCR4通路可能对骨折预后的影响,具体如下。
1 材料与方法
1.1 实验材料
实验动物:SPF级C57BL雄性小鼠40只(福建中医药大学实验中心提供),体重20~25 g。
1.2 小鼠骨折模型
使用5%水合氯醛(6 μl/g,本实验约0.15 ml/只)麻醉C57BL小鼠,剃去体毛,摆好体位。75%酒精消毒3次,上至腹股沟下至脚趾,无菌纱布中央剪1.5 cm左右孔洞,覆盖操作区。于股骨外侧中部做一横行切口,长度大约1.5 cm,暴露股四头肌肌间隙,用无齿镊钝性分离,暴露股骨,于膝关节处使用24 G注射器针头钻入股骨形成髓内针,使用线剪在股骨中段垂直股骨干做一骨折端,断端可见注射器针头,则表示模型构建成功。术中使用无菌纱布压迫止血,使用生理盐水稀释注射用青霉素钠粉末冲洗伤口,生理盐水清洗伤口3次,用丝线缝合伤口处皮肤。
1.3 SDF-1/CXCR4通路抑制
对40只C57BL小鼠进行随机分组,抑制组20只,对照组20只,使用苦味酸标记小鼠。抑制组术后每12小时右侧股骨骨折断端局部注射CXCR4抑制剂AMD3100(1.25 mg/kg,本实验约0.15 ml/只),分别持续1、3、5、8周;对照组在同样部位同样时间注射等量PBS。
1.4 放射学分析
术后第1、3、5、8周使用相同方法麻醉小鼠,双下肢外展外旋体位拍摄X线片,请两位骨科医生评估骨痂、骨折线等,以评估骨折愈合情况。
1.5 标本处理
术后第1、3、5、8周,每组每周处死5只,共40只,麻醉后脱颈处死小鼠,取右下肢,除去周围软组织,剥离出股骨,拔出髓内针。PCR组织迅速放入冻存管,投入液氮中。完成取材后迅速放入-80 ℃冰箱保存。常规脱钙。
1.6 组织形态学测量与分析
免疫组化:切片60 ℃恒温箱烤制过夜,常规脱蜡至水;微波抗原修复;磷酸缓冲盐溶液漂洗3次,5 min/次;内源性过氧化酶阻断剂浸泡10 min;PBS漂洗3次,5 min/次;血清封闭30 min,4 ℃冰箱孵育一抗过夜(抗体浓度:AKT 1∶200,ERK 1∶200,SDF-1 1∶140);磷酸缓冲盐溶液漂洗3次,5 min/次;DAB显影2 min,超纯水终止显影;苏木精染30 s,3道超纯水漂洗;晾干封片。
1.7 实时定量PCR检测
使用Vazyme公司实时定量PCR检测试剂盒,具体详见试剂盒说明书,目的基因引物序列见表1。
1.8 统计学处理
采用SPSS 20.0统计软件进行处理,计量资料以(x±s)表示,均采用正态性检验后两独立样本t检验。P<0.05为有统计学意义。
2 结果
2.1 放射学观察
术后第1周,两组骨折线均明显,有骨痂形成,抑制组稍少于对照组;术后第3周,对照组有大量骨痂生成;术后第5周,抑制组仍可见骨折线,对照组骨折線几乎不可见,骨折基本愈合;术后第8周,抑制组与对照组骨折线均不明显,骨折基本愈合,见图1。
2.2 两组各周实时定量荧光PCR检测结果比较
两组COL1、CXCR4、VEGF在组织中表达均逐渐上升,至第3周时达到高峰,后逐渐下降,且同时间对照组均高于抑制组,差异均有统计学意义(P<0.05);两组COL2均在第1周即达到高峰,后快速下降,且同时间对照组均高于抑制组,差异均有统计学意义(P<0.05),见表2。
2.3 两组各周免疫组织化学检测结果比较
两组SDF-1、ERK、AKT在组织中表达均逐渐上升,至第3周时达到高峰,后逐渐下降,且同时间对照组均高于抑制组,差异均有统计学意义(P<0.05),见表3。
3 讨论
骨折的修复是一个复杂的生物学过程,依赖于间充质干细胞激活后在骨折间隙中积累,增殖分化形成成骨细胞系,最后形成骨痂,重塑为新生骨。许多因素都会对骨折修复产生影响,包括祖细胞的缺乏或受损,其激活,归巢,增殖和分化为成骨细胞谱系的分子调控紊乱,或缺乏适当的代谢环境来进行骨折修复等[4]。
本研究的目的在于研讨SDF-1/CXCR4通路对骨折愈合的影响,通过抑制此通路发现,骨折愈合相关指标均在前3周中明显升高,信号介导的下游通路也随之升高,证明SDF-1/CXCR4通路通过下游AKT与ERK等通路影响骨折愈合,而同时间段对照组均高于抑制组,证实抑制SDF-1/CXCR4通路将会抑制骨折愈合。SDF-1/CXCR4通路在许多生理与病理过程中起重要作用,Wei等[5]研究表明,缺氧激活SDF-1/CXCR4通路,动员和募集祖细胞调节缺氧的肺动脉高压与血管重塑,而使用AMD3100会抑制抑制SDF-1/CXCR4通路,抑制细胞周期与肺动脉平滑肌的细胞增殖。Kucia等[6]认为SDF-1在调节正常造血干细胞(HSC)的运输及其在骨髓中的归巢中起着关键作用。SDF-1/CXCR4通路在骨折修复中除了对细胞增殖、归巢有促进作用以外,对细胞募集同样也有促进作用,文献[7-9]报道,SDF-1在缺氧缺血的环境下高表达,在机体出现损伤时,SDF-1会在损伤部位高表达。COL1、COL2与软骨形成有关[10-11],本研究中COL2表达量在第1周即达到顶峰,之后快速下降,第5、8周几乎无表达,COL1表达量在前3周较多,说明在前3周中有大量软骨细胞形成,之后迅速分化形成成骨细胞。COL1与成骨仍有相关[12],故在第5、8周仍有表达。VEGF是调节血管发育和血管生成最重要的生长因子之一,由于骨是高度血管化的器官,血管的发育和生成对骨骼发育早期至关重要,VEGF能够增强成骨细胞活性、刺激增殖、分化从而加速骨形成[13]。Berendsen等[14]认为,成骨细胞衍生的VEGF会刺激间充质细胞向成骨细胞分化,抑制其向脂肪细胞分化,维持人体骨稳态。在本实验VEGF表达量对照组高于抑制组,与骨生成趋势一致,这与上述文献所表达的VEGF可以促进骨质生成相一致。但是也有文献显示使用VEGF与AMD3100作用于小鼠股骨干骨折愈合模型可以加快骨折愈合[15-19],与本研究结果相悖的原因可能是由于使用VEGF与AMD3100同时作用,VEGF对骨折的正向作用超过AMD3100对骨折愈合的负面作用。
總而言之,SDF-1/CXCR4通路通过介导ERK和AKT通路调节骨折处血管新生、骨质生成等生理过程,AMD3100作为CXCR4的抑制剂抑制了SDF-1/CXCR4通路导致血管新生、骨质生成等相关指标同时降低,故SDF-1/CXCR4通路可作为研究骨折愈合的关键靶点,为研究骨折愈合提供一个思路。本研究的优势在于通过建立骨折后4个时间点观察骨折愈合情况,前后对比,更具有说服力,小鼠骨折愈合模型建立简单便捷,快速有效,很好地模拟了人体骨折。但本研究的不足之处在于无客观指标观察骨痂新生、骨质生成,仅通过X线观察骨折端,由经验丰富的临床骨科医生进行判断,具有一定的偏倚性。本研究下一阶段将从基因层面进一步观测通路介导信号,并通过客观指标观察骨痂新生、骨质生成的具体数值。
参考文献
[1] Lin X,Xiong D,Peng Y Q,et al.Epidemiology and management of osteoporosis in the Peoples Republic of China: current perspectives[J].Clinical Interventions in Aging,2015,25(10):1017-1033.
[2] Marsell R,Einhorn T A.The biology of fracture healing[J].Injury,2011,42(6):551-555.
[3] Kawakami Y,Ii M,Matsumoto T,et al.SDF-1/CXCR4 Axis in Tie2-lineage Cells Including Endothelial Progenitor Cells Contributes to Bone Fracture Healing[J].Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research,2015,30(1):95-105.
[4] Grzegorz S.Fracture Healing and its Disturbances. A literature Review[J].Ortopedia Traumatologia Rehabilitacja,2015,17(5):437-454.
[5] Wei L,Zhang B,Cao W,et al.Inhibition of CXCL12/CXCR4 suppresses pulmonary arterial smooth muscle cell proliferation and cell cycle progression via PI3K/AKT pathway under hypoxia[J]. Journal of Receptors and Signal Transduction,2015,35(4):329-339.
[6] Kucia M,Reca R,Miekus K,et al.Trafficking of Normal Stem Cells and Metastasis of Cancer Stem Cells Involve Similar Mechanisms: Pivotal Role of the SDF-1-CXCR4 Axis[J].Stem Cells,2005,23(7):879-894.
[7] Kucia M,Ratajczak J,Reca R,et al.Tissue-specific muscle,neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury[J].Blood Cells Mol Dis,2004,32(1):52-57.
[8] Devine M J,Mierisch C M,Jang E,et al.Transplanted bone marrow cells localize to fracture callus in a mouse model[J].Journal of Orthopaedic Research,2002,20(6):1232-1239.
[9] Granero-Moltó F,Weis J A,Miga M I,et al.Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing[J].Stem Cells,2009,27(8):1887-1898.
[10] Haltmayer E,Ribitsch I,Gabner S,et al.Co-culture of osteochondral explants and synovial membrane as in vitro model for osteoarthritis[J].PloS One,2019,14(4):e0214709.
[11] Dong R,Ying J,Xu T,et al.Bushenhuoxue Formula Facilitates Articular Cartilage Repair and Attenuates Matrix Degradation by Activation of TGF-β Signaling Pathway[J].Evid Based Complement Alternat Med,2018,2018:2734581.
[12] Aghajanian P,Xing W,Cheng S,et al.Epiphyseal bone formation occurs via thyroid hormone regulation of chondrocyte to osteoblast transdifferentiation[J].Scientific Reports,2017,7(1):10432.
[13] Liu Y,Olsen B R.Distinct VEGF Functions During Bone Development and Homeostasis[J].Archivum Immunologiae et Therapiae Experimentalis,2014,62(5):363-368.
[14] Berendsen A D,Olsen B R.How Vascular Endothelial Growth Factor-A (VEGF) Regulates Differentiation of Mesenchymal Stem Cells[J].Journal of Histochemistry & Cytochemistry,2014,62(2):103-108.
[15] Meeson R,Sanghani-Keri A,Coathup M,et al.VEGF with AMD3100 endogenously mobilizes mesenchymal stem cells and improves fracture healing[J].J Orthop Res,2019,37(6):1294-1302.
[16]Xu J,Mora A L,Shim H,et al.298 role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and pulmonary fibrosis[J].Journal of Investigative Medicine,2006,54(1):S309.
[17]Thomas M N,Kalnins A,Andrassy M,et al. SDF-1/CXCR4/CXCR7 is pivotal for vascular smooth muscle cell proliferation and chronic allograft vasculopathy[J].Transplant International,2015,28(12):1426-1435.
[18]Liao A,Shi R,Jiang Y,et al.Retracted Article:SDF-1/CXCR4 Axis Regulates Cell Cycle Progression and Epithelial-Mesenchymal Transition via Up-regulation of Survivin in Glioblastoma[J].Molecular Neurobiology,2016,53(1):210-215.
[19]Zhang J,Ren X,Shi W,et al.Small molecule Me6TREN mobilizes hematopoietic stem/progenitor cells by activating MMP-9 expression and disrupting SDF-1/CXCR4 axis[J].Blood,2014,123(3):428.
(收稿日期:2020-04-08) (本文編辑:马竹君)
*基金项目:福建省卫生计生科研人才培养项目(2017-CX-46)
①厦门大学附属福州第二医院 福建 福州 350007