不同内源重金属生物炭对Cu和Cd吸附及其对老化作用的响应

2020-03-05 04:45崔红标王昱茗叶回春董婷婷易齐涛张世文
农业工程学报 2020年24期
关键词:菌草内源冻融

崔红标,王昱茗,叶回春,张 雪,董婷婷,易齐涛,张世文

不同内源重金属生物炭对Cu和Cd吸附及其对老化作用的响应

崔红标1,2,3,王昱茗1,2,3,叶回春4,张 雪1,2,3,董婷婷1,2,3,易齐涛1,2,张世文1,2※

(1. 安徽理工大学地球与环境学院,淮南 232001;2. 安徽省高潜水位矿区水土资源综合利用与生态保护工程实验室,淮南 232001;3. 安徽理工大学环境友好材料与职业健康研究院,芜湖 241003;4. 中国科学院空天信息创新研究院,北京 100094)

为明确老化作用对不同内源污染物生物炭吸附重金属稳定性的影响,该研究以不同污染程度(清洁、中度和重度污染)土壤种植的巨菌草秸秆制备3种不同内源Cu和Cd含量的生物炭RB、SB和JB,分析3种生物炭对Cu2+和Cd2+的吸附能力以及干湿和冻融老化对饱和吸附后生物炭中Cu和Cd的生物有效性的影响。结果表明:3种生物炭表面均分布丰富的孔隙结构,RB含有最高的pH值和灰分含量;生物炭对Cu2+和Cd2+的吸附符合Langmuir模型(2=0.951~0.998),且RB对Cu2+和Cd2+的吸附量最大,分别为54.3和37.3 mg/g;与此相同,饱和吸附后RB对Cu2+和Cd2+的固持量最大,分别为21.4和4.78 mg/g。与老化前相比,干湿老化较冻融老化更显著地降低了饱和吸附后生物炭中Cu的TCLP(Toxicity Characteristic Leaching Procedure)浸出含量,促进了Cu从酸溶态和残渣态向还原态和氧化态转化,降低了Cu的环境风险;但是干湿和冻融老化作用增加了饱和吸附后生物炭中Cd的TCLP浸出含量,促进了Cd从残渣态向酸溶态、还原态和氧化态转化,增加了Cd的环境风险。这可能是由于3种生物炭对Cu2+的吸附主要以表面络合为主,对Cd2+的吸附以化学沉淀机制为主。总体上,RB生物炭固持最高的Cu2+和Cd2+,但是干湿和冻融老化增加了饱和吸附后生物炭Cd环境风险,研究结果对于评估生物炭长期钝化修复稳定性具有一定的指导意义。

吸附;老化;生物炭;内源重金属;化学形态

0 引 言

生物炭是一种将农林废弃物等生物质在相对低温、缺氧或限氧条件下热解形成的高度芳香化的富碳固态物质[1-2]。因其具有较大的比表面积与阳离子交换量、发达的孔隙结构、丰富的含碳官能团、通常呈现碱性,对Pb2+、Cu2+和Cd2+等重金属具有较好的吸附固定能力,并广泛应用于土壤重金属污染修复[2-4]。

当前,用于制备生物炭的原料包括:农作物秸秆、污泥、农产品加工废弃物等。由于生物质来源不同,生物炭内源污染物如重金属、PAHs等具有显著性差异[5-6]。目前的研究主要关注生物炭对重金属的吸附机制与效果提升[7-8],但鲜有关注生物炭内源污染物的环境风险。尤其是在中国,尚未有限定生物炭内源污染物的强制标准背景下,极有可能将含有高量内源污染物的生物炭用于土壤的改良和修复,产生二次污染等环境问题[9]。如Li等[10]将某水稻秸秆制备的生物炭(Cd含量0.37 mg/kg)按照5%用量添加土壤后,稻米Cd含量(1.71 mg/kg)较对照处理(0.31 mg/kg)增加了4.52倍,产生了较大的环境风险。因此,开展生物炭内源污染物环境风险的研究具有重要意义。

生物炭应用于自然环境中,会经历一系列的生物和非生物过程,这一系列过程称为生物炭老化[11]。特别是在一些降雨分布不均、存在季节性冻融以及酸雨沉降区,生物炭应用于土壤后,会经历显著的干湿、冻融、酸化等老化作用[12]。生物体会吸附固定土壤溶液中的重金属,这部分被吸附的重金属是否会由于老化作用重新解吸释放,以及不同含量内源重金属的存在是否会影响生物炭对重金属固持的稳定性,目前仍不明确。长期的老化过程会改变生物炭物理化学性质(比表面积、矿物组成、pH值和官能团等),影响生物炭对污染物的固定能力[13-14]。Kumar等[15]研究发现,培养罐内老化180 d后,增加了土壤中生物炭对Zn的稳定化效果。然而,前期的研究发现生物炭虽然短期内能够吸附固定土壤重金属,但是长期田间老化降低了其对重金属的固定能力和钝化作用[16-17]。研究还发现,老化作用会改变巨菌草()生物炭性质,活化生物炭内源Cd,尤其是来源污染土壤生物质制备的生物炭,其内源污染物具有更高的环境风险[9]。因此,厘清不同内源污染物生物炭吸附重金属后的稳定性对于评价生物炭长期应用风险具有重要指导意义。

综上,本研究首先制备不同内源污染物含量的3种生物炭,分析不同内源重金属生物炭对Cu2+和Cd2+的吸附特征(等温吸附),并分析干湿和冻融老化对饱和吸附后生物炭中重金属生物有效性的影响,以期为生物炭的长期安全应用提供实践指导。

1 材料与方法

1.1 生物炭的制备

该研究设定土壤污染程度为土壤污染筛选值<1、1~3、>3~5、>5倍分别为清洁,轻度污染、中度污染、重度污染。土壤重金属污染程度以单个元素超标倍数最高为准。为了获取不同内源重金属含量的生物炭,在江西省鹰潭市刘家站中国科学院红壤生态实验站(简称:红壤站)清洁区(28°12'N,116°55''E)、贵溪铜冶炼厂周边九牛岗(28°10'N,117°12''E)和水泉污染区(28°19'N,117°12''E)土壤种植巨菌草()。与《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB15618—2018)中Cu(50 mg/kg)和Cd(0.3 mg/kg)的风险筛选值相比,九牛岗和水泉土壤Cu分别超标16.3和3.04倍,Cd超标3.27和3.67倍(表1)。因此,九牛岗、水泉和红壤站3个区域土壤分别为重度、中度和清洁土壤。在2017年11月收获3个地区的巨菌草秸秆,并采集土壤样品。秸秆室温下洗净、烘干,剪至1 cm小段;然后,置于马弗炉(通氮气0.5 h),升温至400℃下热解2 h,将制备的生物炭冷却并研磨过筛于干燥器备用。先前的研究表明该区域主要污染物是Cu和Cd[18],因此本研究中仅关注生物炭内源Cu和Cd。来自红壤站(清洁)、水泉(中度污染)和九牛岗(重度污染)巨菌草制备的生物炭分别标记为RB、SB和JB。最后,分析3个区域土壤、巨菌草秸秆及其制备的生物炭内源Cu和Cd含量,结果如表1所示。为保证样品数据分析质量,所有样品均设置3次重复,同时设置空白和标准物质(土壤标准物质,GBW07405;植物标准物质,GBW10010)。

表1 土壤、巨菌草和生物炭中Cu和Cd含量

注:不同字母表示不同区域的处理间在<0.05水平上差异显著,下同。

Note: Different letters indicated significant differences at<0.05 level, the same below.

1.2 生物炭对Cu2+和Cd2+等温吸附特征

为了考察3种生物炭对Cu2+和Cd2+的吸附能力,该研究进行等温吸附试验:称取0.10 g生物炭于50 mL离心管中,分别加入30.4~384 mg/L Cu2+,或者42.8~444 mg/L Cd2+溶液(电解质为0.01 mol/L NaNO3),用0.1 mol/L的HCl或NaOH溶液调节溶液pH值为5,100 r/min振荡24 h,4 000 r/min的条件下离心15 min,用0.22m的微孔滤膜分离上清液,滤液用浓硝酸酸化至pH值<2后待测。生物炭对Cu2+和Cd2+的吸附量按照公式(1)计算:

=(C-C)/(1)

式中CC分别为重金属初始和吸附平衡时的浓度,mg/L;为溶液体积,L;为生物炭的质量,g。

该研究采用Langmuir和Freundlich模型拟合生物炭对Cu2+和Cd2+的等温吸附试验结果,具体方程如下:

Langmuir方程:

C/Q=C/Q+1/(K·Q)(2)

Freundlich方程:

lnQ=ln(K)+ln(C)/(3)

式中C是吸附平衡时溶液浓度,mg/L;Q是吸附平衡时吸附量,mg/g;Q为理论最大吸附量,mg/g;K是与结合强度有关的Langmuir模型参数,L/mg;K是与吸附能力相关的Freundlich参数,mg1-n/(L·g);是各向异性指数。

1.3 老化试验

为了考察老化作用对3种生物炭吸附Cu2+和Cd2+稳定性的影响,该研究首先根据等温吸附试验结果制备饱和Cu2+和Cd2+吸附的生物炭,然后进行干湿和冻融老化试验,具体过程如下:

1)饱和吸附Cu2+和Cd2+生物炭制备:根据等温吸附的结果,选择150 mg/L的Cu2+和Cd2+混合溶液,分别投加足量生物炭,震荡平衡24 h后,离心、过滤、冷冻干燥后过0.15m筛,制备饱和吸附Cu2+和Cd2+的3种生物炭样品。

2)干湿(Dry-Wet,DW)交替老化:按照Nguyen等[19]方法测定生物炭最大持水量。然后称取5 g饱和吸附Cu2+和Cd2+的生物炭于烧杯中,加入适量纯水保证生物炭100%含水率。将样品于烘箱中25 ℃下培养16 h,然后将温度提高至60 ℃继续培养8 h(保证含水率>35%),完成1次干湿交替,一共进行25次干湿交替[20]。

3)冻融(Freeze-Thaw,FT)交替老化:取5 g饱和吸附Cu2+和Cd2+的生物炭于烧杯中,加入适量纯水保证生物炭100%含水率。将样品于-25 ℃下培养5 h,然后转移到烘箱中25 ℃继续培养19 h,完成1次冻融交替,一共进行25次冻融交替[21]。

1.4 分析方法

采用比表面积分析仪(Auto-sorb-iQA3200-4,QUANTATECH,美国)、高分辨场发射扫描电子显微镜(SEM,Quanta 400 FEG,FEI,美国)和X射线光电子能谱仪(XPS,ESCALAB 250 XI,Thermo Scientific,美国)分析生物炭比表面积、表面形貌和有机官能团组成,其中XPS数据采用XPSPEAK 4.1软件分析处理。

生物炭pH值采用固液比1 g∶20 mL,混匀振荡1.5 h后用pH计(PHS-25,雷磁,中国)测定[22]。土壤和生物炭重金属总量采用HF∶HNO3∶HClO4混酸电热板消解,然后用配有石墨炉原子吸收光谱仪(A3,普析通用仪器,中国)测定。美国EPA推荐的Toxicity Characteristic Leaching Procedure(TCLP)可以较好的反应模拟填埋条件下重金属的浸出毒性[11,23],因此本研究采用TCLP法评估生物炭吸附重金属后在环境中的浸出特性。酸溶态(包括水溶态、离子交换态和碳酸盐结合态)、可还原态(铁锰结合态)、可氧化态(有机结合态)及残渣态重金属采用欧共体标准物质局提出的BCR连续提取法分析[24]。

1.5 风险评估与数据处理

为了评价老化作用对生物炭固持Cu2+和Cd2+的影响,该研究采用风险评估指数(酸溶态占总量的百分比)[25]评估老化前后生物炭饱和吸附Cu2+和Cd2+的环境风险。该方法共分为5级,分别是无风险(RAC≤1%),低风险(1%50%)[26]。

所有数据用Excel 2016进行数据处理,SigmaPlot 10.0进行绘图。用SPSS 20进行方差分析(One-way ANOVA),差异显著性分析采用Duncan新复极差方法,显著性水平<0.05。

2 结果和分析

2.1 生物炭理化性质

如图1所示,3种生物炭具有丰富的孔隙分布,内壁上分布有大量微孔,但3种生物炭表面未有显著差异。生物炭的C1分析显示,在284.8、285.35、286.35和288.6 eV结合能处存在4个显著的特征峰,分别对应C‒C/C–H、C–OH、C=O和O=C–OH官能团。分析结果表明,C–C/C–H和C=O官能团含量均表现为:SB>JB>RB,且RB中C–OH和O=C–OH官能团含量高于SB和JB(表2)。3种生物炭均呈碱性,其中RB生物炭pH值最高(10.1),较SB和JB高2.04和1.73(表2)。JB的比表面积最高,达到15.1 m2/g,分别较SB和RB高4.5和2.8 m2/g。本研究3种生物炭比表面积较低,这可能是由于生物炭裂解温度维持在低温400℃,以及巨菌草生物质原料本身的特性差异导致[6,13,27]。3种生物炭的产率为34.2%~36.4%,没有表现出显著的差异。与生物炭pH值相同,3种生物炭灰分含量表现为RB>JB>SB。

注:RB、SB和JB分别为红壤站、水泉和九牛岗巨菌草制备生物炭,下同。

2.2 生物炭对Cu2+和Cd2+的等温吸附

3种生物炭对Cu2+和Cd2+的吸附等温曲线如图2所示。在30.4~154 mg/L浓度范围内,Cu2+的吸附量随着溶液浓度的增加快速增大;当浓度超过150 mg/L后,SB和JB处理Cu2+的吸附量趋于平衡,但RB仍具有一定的上升趋势。与Cu2+相同,在42.8~178 mg/L浓度范围内,Cd2+的吸附量随着溶液浓度的增加快速增大;当浓度超过178 mg/L后,3种生物炭对Cd2+的吸附量未有显著变化。

表2 3种生物炭基本理化性质

注:Langmuir和Freundlich为2种吸附等温方程。

拟合结果表明,Langmuir模型拟合吸附数据的2达到0.951~0.998,接近于1,较Freundlich具有更好地拟合效果(表3)。因此,生物炭对Cu2+和Cd2+的吸附以単分子层吸附为主[28]。Langmuir拟合结果显示3种生物炭对Cu2+的吸附能力大小表现为RB>SB>JB,RB对Cu2+的吸附能力达到54.3 mg/g,是JB的2.56倍。与Cu2+相同,RB对Cd2+的最大吸附能力最高,是JB的1.50倍。这可能是由于RB尽管比表面积不是最高,但是其具有最高的pH值和灰分,因此对重金属的吸附能力较强[29]。这可能是由于生物炭pH值和灰分对Cu2+和Cd2+的吸附较比表面积具有更大的贡献[30]。但是,3种生物炭对Cu2+和Cd2+的结合强度(K)都表现为JB>SB>RB,这表明RB虽能够大量吸附Cu2+和Cd2+,但是其固持能力可能不如SB和JB。

表3 3种生物炭对Cu2+和Cd2+吸附等温线的拟合参数

注:Q为理论最大吸附量;KK分别指示结合强度和吸附能力;是各向异性指数。

Note:Qis theoretical maximum adsorption;KandKindicate adhesive strength and adsorption capacity, respectively;is fractional anisotropy.

2.3 饱和吸附生物炭老化前后Cu2+和Cd2+的浸出特性

与等温吸附试验结果相同,RB对Cu2+和Cd2+饱和吸附后固持量最高,分别为21.4和4.78 mg/kg。其中RB对Cu2+和Cd2+的固持量是SB的1.78和1.91倍,是JB的2.63和2.96倍(图3)。

处理Treatments

老化前3种生物炭对Cu2+和Cd2+的浸出含量均表现为:RB>SB>JB。老化后,干湿交替和冻融交替老化均降低了TCLP提取Cu含量(除JB-FT处理外),且干湿交替老化对TCLP浸出Cu的降低效果优于冻融交替老化(<0.05)。如SB-DW和SB-FT较SB处理,TCLP浸出Cu含量分别降低了1.57和0.39倍。与TCLP浸出Cu变化相反,老化增加了TCLP浸出Cd含量,其中RB-DW和RB-FT较RB处理TCLP浸出Cd分别增加了1.53和1.64倍(图4)。

另外,老化前后3种生物炭中Cu和Cd浸出率表明,干湿和冻融交替老化均降低了Cu的浸出率,但是提高了Cd的浸出率。总体上,老化处理后Cu和Cd浸出率大小表现为:RB>SB>JB,这与等温吸附中结合强度(K)大小相反,这表明生物炭和重金属的结合能力越强,有利于降低重金属的浸出率。但是前期的研究显示,干湿和冻融老化会活化生物炭内源Cu和Cd[12]。这可能是由于本研究中生物炭同时饱和吸附了Cu2+和Cd2+,2种重金属间可能存在一定的交互作用,老化作用改变了生物炭性质,使得其对Cu2+具有较好的固持作用,但是降低了对Cd2+固定的稳定性。

注:DW和FT分别为干湿和冻融老化。

Note: DW and FT are the dry-wet aging and freeze-thaw aging, respectively.

图4 老化作用对生物炭Cu和Cd浸出浓度和浸出率的影响

Fig.4 Effects of aging of three biochars on the leaching concentrations and ratios of Cu and Cd

2.4 饱和吸附生物炭老化前后Cu和Cd化学形态分布

由于重金属全量不能反映其生物活性大小,因此本研究采用BCR多级提取方法评价老化作用对生物炭吸附Cu和Cd活性的影响[31]。老化前,3种生物炭固持的Cu主要以残渣态为主,占总Cu的53.4%~81.0%;酸溶态次之,占总Cu的17.1%~36.4%(图5)。与TCLP浸出Cu的结果相一致,干湿和冻融交替老化后,均显著降低了酸溶态Cu的含量,且以干湿交替老化更为显著。同时,老化处理降低了残渣态Cu的含量,其中RB-DW和RB-FT较RB处理,酸溶态Cu含量分别降低了50.4%和14.9%,残渣态Cu分别降低了21.6%和28.4%。另外,干湿和冻融交替老化均增加了还原态和氧化态Cu的含量,其中RB-DW和RB-FT较RB处理,还原态Cu含量分别增加了155%和216%,氧化态Cu含量分别增加了22.6%和12.7%。风险评估指数表明,老化前RB和SB处理Cu处于中等和高风险(17.1%~36.4%),除JB-FT外,干湿和冻融处理均降低了Cu的RAC,且老化后SB和JB处理Cu的RAC低于RB。这些结果表明老化处理通过促进Cu从酸溶态和残渣态向中间形态转化,降低了Cu的环境风险。

与Cu相同,老化前3种生物炭固持Cd主要以残渣态和酸溶态为主,分别占总Cd的80.1%~92.1%和5.90%~18.7%。老化处理均增加了生物炭酸溶态Cd含量,且冻融处理增加幅度更大,其中RB-DW和RB-FT较RB分别增加了6.55和7.99倍。同时,干湿和冻融处理均增加了还原态和氧化态Cd的含量。如SB-DW和SB-FT处理较SB还原态Cd分别增加了4.40和5.09倍,氧化态Cd分别增加了21.6和6.42倍。另外,老化处理均显著降低了残渣态Cd的含量,且冻融处理降低效果更加显著。Cd的风险水平从老化处理前的低风险和中等风险(RAC=7.78%~19.7%)增加到老化后的极高风险水平(RAC=59.8%~85.4%)。这表明老化处理促进了生物炭Cd由残渣态向酸溶态和中间形态转化,显著增加了Cd的环境风险。

图5 干湿和冻融老化对饱和吸附生物炭Cu和Cd化学形态的影响

2.5 老化作用对生物炭吸附Cu2+和Cd2+活性的影响机制

高鹏等[32]研究表明,老化作用增加了生物炭固定Cd2+的稳定性。然而,本研究中老化作用促进了生物炭对Cu2+的固定,降低了生物炭固定Cd2+的稳定性。前期的研究显示,干湿和冻融老化增加了生物炭内源Cu2+和Cd2+的生物有效性[9]。因此,老化作用对不同重金属的活化效果具有显著的差异,这也可能是前人研究中,生物炭在田间长期稳定化修复后,对不同重金属稳定性具有显著差异的主要原因[33]。

与本研究结果相同,前期的长期定位试验显示,酸雨等老化作用降低了生物炭对重金属的稳定效果,使得土壤重金属有效性随老化时间的增加逐渐降低[16]。但是Bian等[34]研究表明,3 a的老化作用未显著改变生物炭对土壤Cd2+的钝化稳定性。本研究与Bian等[34]研究结果差异的主要原因包括以下几个方面。一是由于老化方式的差异,本研究中仅模拟了干湿和冻融交替老化,未考虑化学和微生物等老化作用。二是本研究中生物炭饱和吸附Cu2+和Cd2+之间也存在一定的相互作用:生物炭对Cu2+的吸附能力显著高于对Cd2+的吸附能力,Cu2+与活性位点的结合能力强于Cd2+,导致生物炭吸附固定的Cd2+更易受环境因子的变化发生活化。最后,生物炭对不同重金属的吸附固定机制本身存在一定的差异。生物炭对重金属的吸附机制包括静电吸引、阳离子-π作用、离子交换、表面络合及化学沉淀等[11,35],但是不同吸附机制的贡献存在显著差异。Jiang等[36]发现水稻秸秆生物炭主要是通过电性相吸降低Cu2+和Cd2+的生物活性。Peng等[37]发现松树木屑生物炭对Cu2+和Cd2+的吸附主要是通过羧基和羟基的表面络合作用。Cui等[38]研究表明干湿和冻融老化作用促进了巨菌草生物炭含氧官能团含量的增加,因此,Cu2+与含氧官能团的表面络合可能是老化后巨菌草生物炭对Cu2+吸附稳定性增加的主要机制[39]。同时,前期研究表明干湿和冻融交替会降低了巨菌草生物炭pH值[38]。因此,推测研究中巨菌草生物炭主要是通过与Cd2+形成碳酸盐等沉淀吸附Cd2+[40]。尽管如此,后期有必要进一步明确老化作用对不同内源污染物生物炭饱和吸附后Cu2+和Cd2+的活化机制。

3 结 论

1)本研究以清洁、中度和重度污染土壤种植的巨菌草秸秆制备了不同内源Cu和Cd含量的3种生物炭RB、SB和JB。结果表明,3种生物炭表面分布大量的微孔,富含C=O和O=C–OH等有机官能团,且清洁区巨菌草生物炭RB的pH值和灰分含量最高;等温吸附结果表明,3种生物炭对Cu2+和Cd2+的吸附符合Langmiur模型,其中RB对Cu2+和Cd2+的吸附量分别为54.3和37.3 mg/g。

2)3种生物炭对Cu2+和Cd2+的饱和吸附量大小均表现为RB>SB>JB,干湿老化较冻融老化更显著地降低了TCLP浸出Cu含量和Cu浸出率;但是干湿和冻融老化均增加了TCLP浸出Cd含量和Cd的浸出率。

3)干湿和冻融老化使Cu从酸溶态和残渣态向还原态和氧化态转化,较老化前降低了Cu的环境风险;但是干湿和冻融老化使Cd从残渣态向酸溶态、还原态和氧化态转化,较老化前增加了Cd的环境风险。

4)3种生物炭对Cu2+的吸附主要以表面络合为主,对Cd2+的吸附以化学沉淀机制为主;RB生物炭固持最高的Cu2+和Cd2+,但是干湿和冻融老化增加了饱和吸附后生物炭中Cd2+环境风险。

[1]Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environmental Pollution, 2011, 159(2): 474-480.

[2]李鸿博,钟怡,张昊楠,等. 生物炭修复重金属污染农田土壤的机制及应用研究进展[J]. 农业工程学报,2020,36(13):173-185. Li Hongbo, Zhong Yi, Zhang Haonan, et al. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 173-185. (in Chinese with English abstract)

[3]He E K, Yang Y X, Xu Z B, et al. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of the Total Environment, 2019, 673: 245-253.

[4]王欣,尹带霞,张凤,等. 生物炭对土壤肥力与环境质量的影响机制与风险解析[J]. 农业工程学报,2015,31(4):248-257. Wang Xin, Yin Daixia, Zhang Feng, et al. Analysis of effect mechanism and risk of biochar on soil fertility and environmrntal quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 248-257. (in Chinese with English abstract)

[5]Liu Y, Dai Q Y, Jin X Q, et al. Negative impacts of biochars on urease activity: High pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals?[J]. Environmental Science &Technology, 2018, 52(21): 12740-12747.

[6]Kookana R S, Sarmah A K, Van Zwieten L, et al. Biochar application to soil: Agronomic and environmental benefits and unintended consequences[J]. Advances in Agronomy, 2011, 112: 103-143.

[7]Li H B, Dong X L, Da Silva E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478.

[8]闫翠侠,贾宏涛,孙涛,等. 鸡粪生物炭表征及其对水和土壤镉铅的修复效果[J]. 农业工程学报,2019,35(13):225-233. Yan Cuixia, Jia Hongtao, Sun Tao, et al. Characteristics of chicken manure biochars and its effect on Cd and Pb remediation in water and soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 225-233. (in Chinese with English abstract)

[9]张雪,刘笑生,沈露露,等. 老化作用对巨菌草茎生物炭内源铜镉活性的影响[J]. 农业环境科学学报,2020,39(3):563-571. Zhang Xue, Liu Xiaosheng, Shen Lulu, et al. Effects of ageing on the availability of endogenous copper and cadmium in biochar derived fromstems[J]. Journal of Agro-Environment Science, 2020, 39(3): 563-571. (in Chinese with English abstract)

[10]Li H H, Yu Y, Chen Y H, et al. . Biochar reduced soil extractable Cd but increased its accumulation in rice (L) cultivated on contaminated soils[J]. Journal of Soils and Sediments, 2019, 19: 862-871.

[11]吴文卫,周丹丹. 生物炭老化及其对重金属吸附的影响机制[J]. 农业环境科学学报,2019,38(1):7-13. Wu Wenwei, Zhou Dandan. Influence of biochar aging on its physicochemical properties and adsorption of heavy metals[J]. Journal of Agro-Environment Science, 2019, 38(1): 7-13. (in Chinese with English abstract)

[12]Mia S, Dijkstra F A, Singh B. Long-term aging of biochar: A molecular understanding with agricultural and environmental implications[J]. Advances in Agronomy, 2017, 141: 1-51.

[13]霍丽丽,姚宗路,赵立欣,等. 典型农业生物炭理化特性及产品质量评价[J]. 农业工程学报,2019,35(16):249-257. Huo Lili, Yao Zonglu, Zhao Lixin, et al. Physical and chemical properties and product quality evaluation of biochar from typical agricultural residues[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 249-257. (in Chinese with English abstract)

[14]Xu Z B, Xu X Y, Tsang D C W, et al. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution, 2018, 242: 1362-1370.

[15]Kumar A, Joseph S, Tsechansky L, et al. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties[J]. Science of the Total Environment, 2018, 626: 953-961.

[16]Cui H B, Fan Y C, Fang G D, et al. Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: A five-year field experiment[J]. Ecotoxicology and Environmental Safety, 2016, 134: 148-155.

[17]Cui H, Zhou J, Si Y, et al. Immobilization of Cu and Cd in a contaminated soil: one- and four-year field effects[J]. Journal of Soils and Sediments, 2014, 14(8): 1397-1406.

[18]Cui H B, Fan Y C, Yang J, et al. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil[J]. Chemosphere, 2016, 161: 233-241.

[19]Nguyen B T, Lehmann J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009, 40(8): 846-853.

[20]Naisse C, Girardin C, Lefevre R, et al. Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil[J]. Global Change Biology Bioenergy, 2015, 7(3): 488-496.

[21]Hale S E, Hanley K, Lehmann J, et al. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar[J]. Environmental Science & Technology, 2011, 45(24): 10445-10453.

[22]Rajkovich S, Enders A, Hanley K, et al. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil[J]. Biology and Fertility of Soils, 2012, 48(3): 271-284.

[23]US Environmental Pollution Agency. SW-846 Method 1311: Toxicity characteristic leaching procedure[EB/OL]. https: //www. epa. gov/hw-sw846/sw-846-test-method-1311- toxicity-characteristic-leaching-procedure, 1992.

[24]Wu J Z, Li Z T, Wang L, et al. A novel calcium-based magnetic biochar reduces the accumulation of As in grains of rice (L) in As-contaminated paddy soils[J]. Journal of Hazardous Materials, 2020, 394: 122507.

[25]Cao C, Zhang Q, Ma Z B, et al. Fractionation and mobility risks of heavy metals and metalloids in wastewater-irrigated agricultural soils from greenhouses and fields in Gansu, China[J]. Geoderma, 2018, 328: 1-9.

[26]Jain S, Khare P, Mishra D, et al. Biochar aided aromatic grass[(Roxb. ) Wats. ] vegetation: A sustainable method for stabilization of highly acidic mine waste[J]. Journal of Hazardous Materials, 2019, 390: 121799.

[27]Chen Z M, Xiao X, Chen B L, et al. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J]. Environmental Science &Technology, 2015, 49(1): 309-317.

[28]陈再明,方远,徐义亮,等. 水稻秸秆生物碳对重金属Pb2+的吸附作用及影响因素[J]. 环境科学学报,2012,32(4):769-776. Chen Zaiming, Fang Yuan, Xu Yiliang, et al. Adsorption of Pb2+by rice straw derived-biochar and its influential factors[J]. Acta Scientiae Circumstantiae, 2012, 32(4): 769-776. (in Chinese with English abstract)

[29]Jia Y H, Shi S L, Liu J, et al. Study of the effect of pyrolysis temperature on the Cd2+adsorption characteristics of biochar[J]. Applied Sciences-Basel, 2018, 8(7): 1019.

[30]Hao H, Jing Y D, Ju W L, et al. Different types of biochar: Effect of aging on the Cu(II) adsorption behavior[J]. Desalination and Water Treatment, 2017, 95: 227-233.

[31]Khadhar S, Sdiri A, Chekirben A, et al. Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils[J]. Environmental Pollution, 2020, 263: 114543.

[32]高鹏,陈昱,梁媛. 老化作用促进生物炭已吸附Cd(Ⅱ)的进一步稳定化研究[J]. 环境科学学报,2018,38(5):1877-1884. Gao Peng, Chen Yu, Liang Yuan. Study of aging effect on the stability of biochar initially adsorbed Cd(Ⅱ)[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1877-1884. (in Chinese with English abstract)

[33]O'Connor D, Peng T Y, Zhang J L, et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials[J]. Science of the Total Environment, 2018, 619: 815-826.

[34]Bian R J, Joseph S, Cui L Q, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121-128.

[35]Dai Y J, Zhang N X, Xing C M, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review[J]. Chemosphere, 2019, 223: 12-27.

[36]Jiang J, Xu R K, Jiang T Y, et al. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol[J]. Journal of Hazardous Materials, 2012, 229/230: 145-150.

[37]Peng H B, Gao P, Chu G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229: 846-853.

[38]Cui H B, Li D T, Liu X S, et al. Dry-wet and freeze-thaw aging activate the endogenous copper and cadmium in biochar[J]. Journal of Cleaner Production, 2021, 288: 125605.

[39]Liu Y Y, Wang L, Wang X Y, et al. Oxidative ageing of biochar and hydrochar alleviating competitive sorption of Cd(II) and Cu(II)[J]. Science of the Total Environment, 2020, 725: 138419.

[40]Chang R H, Sohi S P, Jing F Q, et al. A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation[J]. Environmental Pollution, 2019, 254: 113123.

Adsorption of Cu and Cd by biochars with various contents of endogenous heavy metals and their responses to aging

Cui Hongbiao1,2,3, Wang Yuming1,2,3, Ye Huichun4, Zhang Xue1,2,3, Dong Tingting1,2,3, Yi Qitao1,2, Zhang Shiwen1,2※

(1.,,232001,; 2.,232001,, 3.,,241003,; 4.,,100094,)

Biochar has gained increasing attention in recent years due to its potential use in environmental remediation. The application of biochar may adsorb heavy metals from wastewater and decrease the bioavailability of heavy metals in soil. The concentrations of endogenous heavy metals in biochar are significant higher than in its feedstock after pyrolysis treatment. However, limits for heavy metals in biochars are lacking in some countries, which may lead to potential environmental risk resulting from the large-scale application of biochars rich in heavy metals. Therefore, three kinds of biochars named RB, SB, and JB with various contents of Cu and Cd were prepared from the straws ofgrew in clean soil, moderately-polluted, and highly-polluted soils by heavy metals, respectively. The physicochemical properties of three biochars were investigated by Scanning Electron Microscopy (SEM), Adsorption capacities of Cu2+and Cd2+for three biochars were evaluated by batch experiments. Finally, the effects of Dry-Wet (DW) and Freeze-Thaw (FT) aging on the stability of heavy metals adsorbed by three biochars with different contents of endogenous heavy metals were investigated. Results showed that large amount of micro-pores were distributed on the surface of biochars, and RB contained the highest pH value and ash content. The XPS analysis indicated that biochars had a lot of organic functional groups, such as C‒C/C–H, C–OH, C=O and O=C–OH. The adsorption data were better fitted by Langmuir isotherm model (2=0.951-0.998) for three biochars. Adsorption capacities of Cu2+followed the order of RB>SB>JB, and the order of RB>JB>SB for adsorption capacities of Cd2+. RB had the highest adsorption amounts of Cu2+and Cd2+with 54.3 and 37.3 mg/g among three biochars, respectively. Similarly, the highest concentrations of total Cu and Cd after saturated adsorption were found in RB with 21.4 and 4.78 mg/g, respectively. DW and FT aging significantly changed the bioavailability of Cu and Cd in three biochars after saturated adsorption.DW aging significantly reduced the TCLP-extractable Cu in biochar after saturated adsorption compared with that of FT aging. For instance, concentrations of TCLP-extractable Cu in SB-DW and SB-FT were decreased by 1.57 and 0.39 times than that of SB. Moreover, DW aging promoted the transformation of Cu from acid-soluble and residual fractions to reducible and oxidizable fractions, and reduced the environmental risk of Cu. However, DW and FT aging significantly increased the TCLP-extractable Cd in biochars after saturated adsorption, promoted the transformation of Cd from residual fraction to acid-soluble, reducible and oxidizable fractions, and increased the environmental risk of Cd. Especially for RB-DW and RB-FT, contents of acid-soluble Cd were increased by 6.55 and 7.99 times than that of RB. It may be due to the surface complexation and chemical precipitation played key roles for the adsorption of Cu and Cd, respectively. In short, RB retained the highest amount of Cu and Cd, but DW and FT aging increased the environmental risk of Cd in three biochars after saturated adsorption. The study is of great significance for evaluating the long-term remediation stabilization of biochar.

adsorption; aging; biochars; endogenous heavy metals; chemical fractions

崔红标,王昱茗,叶回春,等. 不同内源重金属生物炭对Cu和Cd吸附及其对老化作用的响应[J]. 农业工程学报,2020,36(24):203-210.doi:10.11975/j.issn.1002-6819.2020.24.024 http://www.tcsae.org

Cui Hongbiao, Wang Yuming, Ye Huichun, et al. Adsorption of Cu and Cd by biochars with various contents of endogenous heavy metals and their responses to aging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 203-210. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.024 http://www.tcsae.org

2020-09-24

2020-12-02

国家自然科学基金项目(41601340);安徽省高校自然科学研究重大项目(KJ2020ZD35);安徽理工大学环境友好材料与职业健康研究院研发专项基金资助项目(ALW2020YF12);淮北矿业集团科技研发项目(No. 2020-113)

崔红标,副教授,主要从事重金属污染土壤修复研究。Email:hbcui@aust.edu.cn

张世文,教授,主要从事重金属污染土壤修复研究。Email:mamin1190@126.com

10.11975/j.issn.1002-6819.2020.24.024

X53

A

1002-6819(2020)-24-0203-08

猜你喜欢
菌草内源冻融
冻融砂岩的能量演化规律与损伤本构模型
畜禽粪便生物炭内源重金属在酸性土壤中的迁移转化
施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响
种植与处理菌草的机械现状探析
“巨草”长宝丰,山海情未了
菌草复合饮料配方的研究
低温冻融作用下煤岩体静力学特性研究
冻融对银川平原压实砂土压缩性的影响
冻融环境下掺合料与引气剂对混凝土的影响
林占熺:中国菌草背后的“另类”科学家