添加砾石对崩岗岩土无侧限抗压强度的影响

2020-03-05 04:42杨彩迪牛玉华张晓明左知灵张睿钰
农业工程学报 2020年24期
关键词:侧限砾石土体

杨彩迪,牛玉华,张晓明,3,卫 杰,左知灵,张睿钰

添加砾石对崩岗岩土无侧限抗压强度的影响

杨彩迪1,2,牛玉华1,张晓明1,3※,卫 杰1,左知灵1,张睿钰1

(1. 华中农业大学资源与环境学院,武汉 430070;2. 浙江大学环境与资源学院,杭州 310058;3. 农业农村部长江中下游耕地保育重点实验室,武汉 430070)

崩岗是中国南方红壤地区常见的一种土壤侵蚀类型,该研究对砾石含量、形状和直径三因素进行正交设计,分析不同组合的砾石对崩岗岩土无侧限抗压强度的影响。结果表明,崩岗4层土体的无侧限抗压强度均值由大到小依次为淋溶层A、黏化层Bt、淀积层B、母质层C,效果较好的处理分别为:淋溶层A,质量分数15%,直径2~4 mm,圆砾;黏化层Bt,质量分数15%,直径5~7 mm,圆砾;淀积层B,质量分数15%,直径5~7 mm,圆砾;母质层C,质量分数15%,直径5~7 mm,圆砾。4层土体的轴向应力随轴向应变均呈急剧上升、急剧下降、减速衰减和衰减稳定4个阶段,但砾石复合土高于未加砾石土。4层土体在较好处理下的无侧限抗压强度分别比未加砾石土提高59.56%、71.70%、49.51%和83.64%,且二者呈线性递增函数关系(2=0.99)。添加砾石的土柱在受压时破坏程度较小,其中淋溶层A和母质层C主要集中为下部破碎,黏化层Bt和淀积层B主要为土柱一侧破碎。该研究可为崩岗侵蚀预防和分层治理提供理论依据。

砾石;土壤;相关;崩岗;无侧限抗压强度;应力-应变;破坏形态

0 引 言

崩岗是指山坡土体或岩石风化壳在水力和重力作用下分解、崩塌和受冲侵蚀的现象,属于水力-重力复合侵蚀类型[1-2]。崩岗在中国南方花岗岩地区分布最为广泛,具有突发性强和发展速度快的特点,因此比一般水土流失更具有威胁性[3]。目前崩岗侵蚀已引起国内不少学者的关注,主要集中于对崩积体的侵蚀过程、产流产沙特性、侵蚀影响因子以及水动力学机制等的研究[4-8]。无侧限抗压强度确定的土壤抗压能力是衡量土壤改良效果的主要依据,土壤的抗压强度直接影响土体的机械下陷,因此对崩岗侵蚀区的改良土体进行无侧限抗压强度研究具有重要的实践意义[9]。目前已有学者对此进行了初步研究,黄倩楠等[10]发现掺砂显著降低崩岗岩土无侧限抗压强度,相同掺砂量时,混合掺砂较分层掺砂更能提高无侧限抗压强度。张建伟等[11]得出木质素能够提高粉土的无侧限抗压强度,一定的冻融循环次数下木质素改良土的无侧限抗压强度随掺量的增大先增加后降低。童丽萍等[12]通过研究不同掺合料对土坯墙泥浆抗压强度的影响得出,随粗砂含量增加,试块抗压强度先增后减;周宇等[13]研究得出石灰改良红层的无侧限抗压强度随石灰掺量的增加而增大;经历干湿循环作用后,试样呈多缝锥形破坏。

天然沉积砂砾分布广泛,结构稳定,可就地取材,具有承载力高、抗剪强度高、压缩性低、渗透性大、排水性能好和价格低廉等特点,已广泛应用到建筑材料、地基改良和堤坝建筑等方面[14-16]。砾石与土壤颗粒在密度、表面结构及透水性等方面存在本质差异,因此当砾石和土壤混合后会导致土壤结构与理化性质发生变化,进而影响土体的抗压、抗剪和水力侵蚀等能力[17-21]。吉恩跃等[22]发现砾石土的抗拉强度随含水率增大而减小,随干密度增大而增大;随掺砾量增加,土样抗拉能力不断减弱。王蕙等[23]通过比较不同砾石存在形式下红壤坡面侵蚀特征发现,在较小降雨侵蚀力作用下,嵌套于坡面的砾石可以增加地表入渗,阻碍坡面侵蚀。郑腾辉等[24]发现随砾石含量的增加,岩溶区坡面累计侵蚀量呈先增后减的变化趋势。

目前利用砾石改良土壤的研究已取得一定进展,但在中国南方典型崩岗区研究较少。本研究通过添加砾石对崩岗不同层次土体无侧限抗压强度的试验研究,探讨崩岗土体无侧限抗压强度随砾石含量、砾石形状和砾石直径3个因素的变化规律,并对机理进行分析,以期为崩岗侵蚀防治提供理论依据。

1 研究区概况

研究区位于湖北省咸宁市通城县,湘、鄂、赣3省交界处,亚热带季风气候,四季分明,气候温和,光照适中,年平均气温16.7 ℃,无霜期260 d,年平均降雨量1 512.8 mm,径流总量9.08亿m3,但由于受季风影响和时空分布不均,导致春季多低温,夏季高温,常有灾害性天气发生。加之花岗岩出露面积大,水土流失严重,因此在该地开展崩岗研究工作具有很强的代表性。取样地布设于通城县五里镇五里社区(116°46′26″E,29°12′39″N),海拔高度为142 m。该区土壤类型为花岗岩发育的典型棕红壤,结构松散,水土流失严重,崩岗侵蚀范围广,土壤侵蚀模数大,严重影响该地农业与经济发展。

2 材料与方法

2.1 分层与采样

经过野外实地调查,2018年6月在湖北省通城县五里社区选择一处较为完整的瓢型崩岗,面积为126 m2,崩壁后壁高9 m,沟道长17 m,沟道最大宽5.7 m,沟口宽2.9 m,平均深5 m。采样时修整崩岗剖面使各层次充分呈现,根据剖面颜色从红到白自上而下划分土壤层次,依次为淋溶层A(含根,0~0.17 m)、黏化层Bt(少或无根,0.17~0.49 m)、淀积层B(过渡层,呈现红白相间,0.49~3.5 m)、母质层C(白色,3.5~3.9 m)。选取4层土壤的中部分别用体积为100 cm3(20 cm²×5 cm)的环刀采集崩岗土层原状土样,将采样后的环刀迅速放入塑封袋内保存,同时在中部多点采取代表性土壤带回室内,置于通风处阴干,过2 mm筛备用。土壤理化性质的测定方法为:烘干法测定含水率,环刀法测定容重,吸管法测定颗粒组成,重复3次。

2.2 试验设计

由于砾石颗粒大小与形状的差异,导致其与土壤之间咬合差异明显,对土体力学特性产生影响,因此本试验考虑砾石含量、直径和形状3个因素进行正交设计(表1)。

表1 三因素正交设计试验

砾石含量3个水平:5%,10%和15%(质量分数);砾石直径3个水平:2~4、5~7、8~10 mm;砾石形状2个水平:圆砾和角砾,共计3×3×2=18种处理,每种处理3个水平,砾石均为整体均匀加入。本次试验空白试样(CK)12个(4层土×3次重复),砾石复合土试样216个(4层土体×18种处理×3次重复),共计试样228个。试验所用砾石购买于湖北中泰恒宇商贸有限公司,用套筛选出直径为2~4、5~7、8~10 mm 3种粒径的砾石,并区分圆砾和角砾,判断能否将砾石弄碎以挑选真正的砾石。将收集的砾石冲洗干净,烘干并再次过筛。

2.3 试样制备及测定

根据野外实地调查较常见的含水率20%、密度1.35 g/cm3,采用三轴仪饱和器(直径39.1 mm×高80 mm),按照试验设计中的18种处理制备重塑土样。将备用土样平铺于不吸水的托盘内,用小型喷雾器喷洒定量蒸馏水于土样,搅拌均匀后用保鲜膜密封,置于保湿缸内24 h,使土水充分混匀稳定。将备好的砾石与加水稳定后的土样充分混合,均分成4份装于铝盒中。试样共分4层装置,每次将1个铝盒内的砾石土体混合物全部倒入到三瓣桶锤击,使土粒相对密实,保证每次击实后用直尺测量的高度减少2 cm,将每层表面打毛,保证土样为一个均匀整体。试样的测定与计算依据GB/T 50123—1999土工试验方法标准[10,25]。试验使用南京土壤仪器有限公司生产的YYW-2型应变控制式无侧限压力仪测定无侧限抗压强度,仪器最大测力0.6 kN,加载速率2.4 mm/min,量力环系数2.4 N/0.01 mm,即240 N/mm。

3 结果与分析

3.1 崩岗剖面土壤基本理化性质

崩岗剖面4层土壤的基本理化性质如表2。

表2 崩岗不同层次土壤基本理化性质

注:不同字母表示不同土壤层次间有显著差异。下同。

Note: Different letters indicate significant differences between soil layers. The same below.

由表2可知,4层土壤的含水率从上而下先增大后减小,淋溶层A、黏化层Bt和淀积层B这3层土壤的容重没有显著差异,母质层C的容重显著增加。4层土壤黏粒含量由高到低分别为黏化层Bt、淋溶层A、淀积层B、母质层C;母质层C和淀积层B的砂粒含量较高;粉粒含量母质层C最高,淀积层B最低。除淋溶层A外,从黏化层Bt到母质层C,黏粒含量逐渐减小,砂粒含量逐渐增大。从表格的水平方向来看,淋溶层A 3种粒径的含量相对均匀,黏化层Bt的黏粒含量约为砂粒的2倍,淀积层B的砂粒含量约为粉粒的2倍,母质层C砂粒含量约为黏粒的2倍,可见土壤的理化性质随深度的变化也在发生显著的变化。淋溶层A由于外界生物、干湿交替和冻融交替等影响,粒径组分相对平均,结构良好,质地优良。而其余3层3种粒径含量相差较大,导致相对失衡,土壤胶黏性差,颗粒松散,质地较差。垂直方向4层土体的性质差别较大,前3层的黏粒含量明显大于母质层C,而淀积层B和母质层C的砂粒含量均较大,结构松散,雨季地表径流入渗或者直接暴露于地表后,在水流冲力和重力的作用下容易发生崩解,为崩岗的发生创造条件[26]。

3.2 崩岗4层土体不同砾石组合下的无侧限抗压强度

通过对崩岗4层土体和砾石复合土进行无侧限抗压强度试验,结果如表3所示。

表3 不同砾石组合下崩岗的无侧限抗压强度

由表3可知,4层土体的无侧限抗压强度均值由大到小为淋溶层A、黏化层Bt、淀积层B、母质层C,效果较好的处理是:1)淋溶层A:A3B1C1,砾石质量分数15%,直径2~4 mm,形状圆砾;2)黏化层Bt:A3B2C1,砾石质量分数15%,直径5~7 mm,形状圆砾;3)淀积层B:A3B2C1,砾石质量分数15%,直径5~7 mm,形状圆砾;4)母质层C:A3B2C1,砾石质量分数15%,直径5~7 mm,形状圆砾。4层土体的砾石质量分数均为15%时较好,添加砾石能有效提高土体无侧限抗压强度,这是因为砾石比土壤能更好地抵抗外界压力,同时含量越高,颗粒之间的摩阻效应越明显;除淋溶层A的较好砾石直径是2~4 mm外,其余3层均为5~7 mm,这是因为淋溶层A的黏粒、粉粒和砂粒含量相对均匀,且土样中可以看到细小根系等侵入体,这些因素会导致土体本身的黏聚力更好,砾石直径过大反而破坏本身的黏聚力,而其他3层土体的颗粒组成分布不均,黏化层Bt黏粒含量较高,而淀积层B和母质层C砂粒含量较高,因此需要合适直径(5~7 mm)的砾石进行加强。当砾石含量相同,直径2~4 mm的砾石较多时,整个土体被数量庞大的砾石填充,砾石与砾石之间和砾石与土壤之间较分散,砾石之间接触较少,胶黏作用较弱,对土体的裂纹不能产生很好的阻挡作用,而当直径为8~10 mm时,土石混合体大孔隙急剧增多,颗粒间作用力下降,抗压效果也较差。4层土体均为圆砾较好,这是因为角砾轮廓不规则,颗粒与颗粒之间咬合点较多,但单个咬合接触面积少,咬合力不够牢固;圆砾之间的咬合面积较大,咬合力相对较强,同时颗粒形状越不规则,更容易与周围土体形成拱架桥结构,最终导致孔隙率增大,土体容易破碎,抗压强度降低,所以圆砾的抗压能力更强[27]。

3.3 崩岗4层土体未加砾石与较好砾石处理下的轴向应力-应变关系曲线

未加砾石土与处理效果较好的砾石复合土的应力-应变曲线如图1。

图1 未加砾石土与砾石复合土的应力-应变曲线

由图1可知,崩岗4层土体中,未加砾石土和砾石复合土的应力均经历急剧上升、急剧下降、减速衰减和衰减稳定4个阶段,但砾石复合土的轴向应力均高于未加砾石土,其中淋溶层A和黏化层Bt最为明显。这是因为:1)急剧上升阶段:主要发生在轴向应变为2%~3%之前,此时轴向应变较小,未达到土样破坏时的最大轴向应力,土柱还未被外部压力破坏,轴向应力随位移变化急剧上升;2)急剧下降阶段:主要发生在轴向应变为3%~5%之间,此时试样达到抵抗破坏时的最大轴向应力,继续施加压力使得试样发生很大的破碎变形,由于土样变形减弱了砾石与土样之间的咬合程度,进一步加剧土样分散,因此轴向应力急剧下降;3)减速衰减阶段:主要发生在轴向应变为8%~10%之间,经历过前一阶段急剧下降,土样破碎基本稳定,不会再出现新的形变,咬合程度的变化也减小,因此轴向应力衰减幅度逐渐减小;4)衰减稳定阶段:主要发生在轴向应变为10%~15%,此阶段轴向应力基本稳定。淀积层B和母质层C相对于淋溶层A和黏化层Bt,随着轴向应变的增大,轴向应力更快地趋于稳定,这与土壤的理化性质密切相关,淋溶层A和黏化层Bt由于黏粒含量高,加之砾石咬合程度较大,在后期阶段可以起到一定的缓冲作用,而淀积层B和母质层C砂粒含量较高,结构十分松散,在被破坏后很难缓冲和咬合,此时加入的砾石不但没有发挥抗压作用,反而使土柱更为松散,因此后期阶段轴向应力低于未加砾石土的轴向应力。

3.4 崩岗4层土体未加砾石与较好砾石处理下的无侧限抗压强度比较

未加砾石与较好砾石处理下崩岗的无侧限抗压强度比较如图2a所示。

注:a图不同字母表示不同层次土壤间有显著差异(P<0.05)。*,P<0.05。

如图2所示,未加砾石土的无侧限抗压强度分别为77.18、64.59、45.09、13.97 kPa,较好砾石组合下的无侧限抗压强度分别为123.15、115.90、67.41、25.65 kPa,相同层次砾石复合土的无侧限抗压强度明显大于未加砾石土,分别提高59.56%、71.70%、49.51%、83.64%,且提高率大致呈递增趋势。原因是:1)母质层C的作用效果最为明显,因为该层本身含有砾石较多,再次加入砾石相当于形成一个“石柱”,石头的抗压能力显然大于土体;2)淋溶层A和黏化层Bt的作用效果次之,因为这两层土壤各种粒径含量相当,黏结性较强,孔隙度较低,能较好地发挥砾石的摩擦咬合作用;3)淀积层B作用效果最小,因为该层本身含有较多砾石,结构松散,加入砾石的量又没有达到形成“石柱”的程度,只发挥了砾石之间的摩擦咬合作用。

未加砾石土与砾石复合土无侧限抗压强度的拟合关系如图2b,砾石复合土的无侧限抗压强度与未加砾石土的无侧限抗压强度呈线性递增函数关系,回归方程为=1.60+1.36(2=0.99),相关性较强,表明添加砾石对增强崩岗土体的无侧限抗压强度有明显的效果。进一步对较好直径下砾石的圆砾和角砾进行模拟,淀积层B相关性最好,回归方程为=0.64+18.66(2≈1),表明砾石形状对无侧限抗压强度的影响较大。Dodds[28]的研究也表明砂土力学性质受颗粒形状等微观参数影响较大。

3.5 添加砾石对提高崩岗无侧限抗压强度效果的分析

崩岗土体在进行无侧限抗压强度试验后的破坏形态如图3。

注:CK代表未加砾石土。

未加砾石土均出现不同程度的碎土破碎,淋溶层A和母质层C主要集中为下部破碎,但母质层C因为黏粒含量低,土粒之间胶结强度较低,因此碎屑更多。黏化层Bt和淀积层B主要为土柱一侧破碎,但淀积层B比黏化层Bt破碎程度更为明显,这是因为黏化层Bt黏粒较多,土壤的黏聚力较强,使得土柱不容易被破坏。添加砾石后的土柱在受压时也出现不同程度的破坏,但破坏程度相比未加砾石土较小,淋溶层A和黏化层Bt表现为外部有一条裂痕但内部较完整,这是因为砾石之间相互摩擦咬合使土柱不易破碎变形。淀积层B和母质层C破坏主要发生在下部,成碎屑状掉落,这是因为砂粒含量较高,形成类似的“石柱”,抗压强度增加,但砾石之间缺乏胶黏,一旦下部有一点裂痕出现就会出现局部的破碎,但是不会出现整体的裂痕。总体来看,添加砾石能够有效提高崩岗不同层次土体的抗压性能,但不同层次土体的抗压机理不同。

4 结 论

通过对崩岗4层土体进行3个砾石含量、3个砾石直径和2个砾石形状的无侧限抗压强度试验,分析不同层次土体的无侧限抗压强度规律可知,崩岗不同层次土体效果较好的处理是:1)淋溶层A:砾石质量分数15%,直径2~4 mm,形状圆砾;2)黏化层Bt:砾石质量分数15%,直径5~7 mm,形状圆砾;3)淀积层B:砾石质量分数15%,直径5~7 mm,形状圆砾;4)母质层C:砾石质量分数15%,直径5~7 mm,形状圆砾。崩岗4层土体和砾石复合土的轴向应力均呈现急剧上升、急剧下降、减速衰减和衰减稳定4个阶段,但砾石复合土样的轴向应力高于未加砾石土。4层土体砾石复合土的无侧限抗压强度比未加砾石土分别提高59.56%、71.70%、49.51%和83.64%,砾石复合土与未加砾石土的无侧限抗压强度呈线性递增函数关系(2=0.99),添加砾石的土柱在受压时破坏程度小于未加砾石土。砾石对崩岗不同层次土体的无侧限抗压强度影响不同,不同砾石与土壤颗粒接触面、接触点之间的咬合阻力对无侧限抗压强度的影响不同,受颗粒外形的摩擦力和凹凸度支配,且与土体自身的理化性质密切相关。

[1] 廖义善,唐常源,袁再建,等. 南方红壤区崩岗侵蚀及其防治研究进展[J]. 土壤学报,2018,55(6):1297-1312. Liao Yishan, Tang Changyuan, Yuan Zaijian, et al. Research progress on benggang erosion and its prevention measure in red soil region of southern China[J]. Acta Pedologica Sinica, 2018, 55(6):1297-1312. (in Chinese with English abstract)

[2] 文慧,倪世民,冯舒悦,等. 赣南崩岗的发育阶段及部位对土壤水力性质的影响[J]. 农业工程学报,2019,35(24):136-143. Wen Hui, Ni Shimin, Feng Shuyue, et al. Effects of developmental stages and parts of collapsing gully on soil hydraulic properties in southern Jiangxi[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 136-143. (in Chinese with English abstract)

[3] 林敬兰,黄炎和,蒋芳市,等. 崩岗土体的渗透性能机理研究[J]. 水土保持学报,2013,27(2):53-56,144. Lin Jinglan, Huang Yanhe, Jiang Fangshi, et al. Study on mechanism of different soil layer’s permeability in benggang[J]. Journal of Soil and Water Conservation, 2013, 27(2): 53-56, 144. (in Chinese with English abstract)

[4] 冯舒悦,王军光,文慧,等. 赣南崩岗侵蚀区不同部位土壤抗剪强度及其影响因素研究[J]. 土壤学报,2020,57(1):71-83. Feng Shuyue, Wang Junguang, Wen Hui, et al. Soil shear strength of collapsing erosion area in south Jiangxi of China relative to position of the soil and its influencing factors[J]. Acta Pedologica Sinica, 2020, 57(1): 71-83. (in Chinese with English abstract)

[5] 王秋霞,丁树文,邓羽松,等. 花岗岩崩岗区不同土层的侵蚀水动力学特征[J]. 土壤学报,2017,54(3):570-580. Wang Qiuxia, Ding Shuwen, Deng Yusong, et al. Hydrodynamic characteristic of erosion in different soil layers in granite collapse region[J]. Acta Pedologica Sinica, 2017, 54(3): 570-580. (in Chinese with English abstract)

[6] 李学增,黄炎和,林金石,等. 不同宽度冲刷槽对崩岗崩积体产流产沙的影响[J]. 农业工程学报,2016,32(9):136-141. Li Xuezeng, Huang Yanhe, Lin Jinshi, et al. Effects of different width of scouring flumes on runoff and sediment yield of colluvial deposits of collapsing hill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 136-141. (in Chinese with English abstract)

[7] 高鹏宇,詹振芝,蒋芳市,等. 坡度和流量对崩积体坡面细沟水流输沙能力的影响[J]. 水土保持学报,2018,32(3):68-73. Gao Pengyu, Zhan Zhenzhi, Jiang Fangshi, et al. Effects of slop and flow on sediment transport capacity of the colluvial deposit for rill flow in Benggang[J]. Journal of Soil and Water Conservation, 2018, 32(3): 68-73. (in Chinese with English abstract)

[8] Jiang F S, Huang Y H, Wang M K, et al. Effects of rainfall intensity and slope gradient on steep colluvial de-posit erosion in southeast China[J]. Soil Science Society of America Journal, 2014, 78(5): 1741-1752.

[9] Karkala S, Davis N, Wassgren C, et al. Calibration of discrete-element-method parameters for cohesive materials using dynamic-yield-strength and shear-cell experiments[J]. Processes, 2019, 7(5): 278.

[10] 黄倩楠,张晓明,卫杰,等. 掺砂对崩岗土壤无侧限抗压强度的影响[J]. 北京林业大学学报,2020,42(1):114-120. Huang Qiannan, Zhang Xiaoming, Wei Jie, et al. Effects of mixing sand on unconfined compressive strength of soil in collapsing gully[J]. Journal of Beijing Forestry University, 2020, 42(1): 114-120. (in Chinese with English abstract)

[11] 张建伟,亢飞翔,边汉亮,等. 冻融循环下木质素改良黄泛区粉土无侧限抗压强度试验研究[J]. 岩土力学,2020,41(增刊2):1-6. Zhang Jianwei, Kang Feixiang, Bian Hanliang, et al. Experiments on unconfined compressive strength of lignin modified silt in Yellow river flood area under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2020,41(Supp.2):1-6. (in Chinese with English abstract)

[12] 童丽萍,李聪. 不同掺合料对土坯墙泥浆抗压强度影响研究[J]. 郑州大学学报:工学版,2018,39(5):82-90. Tong Liping, Li Cong. Study on the influence of different admixtures on compressive strength of adobe wall mud[J]. Journal of Zhengzhou University: Engineering Science, 2018, 39(5): 82-90. (in Chinese with English abstract)

[13] 周宇,李国玉,武红娟,等. 石灰改良红层无侧限抗压强度试验研究[J/OL]. 冰川冻土,2020. 2020-05-25. http://kns.cnki.net/kcms/detail/62.1072.P.20200522.1914.008. html Zhou Yu, Li Guoyu, Wu Hongjuan, et al. Study on the unconfined compressive strength of lime stabilized redmudstone[J/OL]. Journal of Glaciology and Geocryology, 2020. 2020-05-25. http://kns.cnki.net/kcms/detail/62.1072.P. 20200522.1914.008.html (in Chinese with English abstract)

[14] 郭庆国. 粗粒土的工程应用[M]. 郑州:黄河水利出版社,1998:1-18.

[15] Guillaume B, Gilles A F, Frédéric L, et al. Channel response to sediment replenishment in a large gravel-bed river: The case of the Saint-Sauveur dam in the Buëch River (Southern Alps, France)[J]. River Research and Applications, 2020, 36(6): 880-893.

[16] Naphol Y, Pitthaya J, Krissakorn K, et al. Laboratory investigation of the properties of cement fly ash gravel for use as a column-supported embankment[J]. Construction and Building Materials, 2020, 257: 119493.

[17] 王雪松,谢永生,景民晓,等. 不同砾石类型对工程堆积体侵蚀规律的影响[J]. 水土保持学报,2014,28(5):21-25. Wang Xuesong, Xie Yongsheng, Jing Minxiao, et al. Effect of the different kinds of gravels on soil erosion of spoilbank[J]. Journal of Soil and Water Conservation, 2014, 28(5): 21-25. (in Chinese with English abstract)

[18] 詹振芝,黄炎和,蒋芳市,等. 砾石含量及粒径对崩岗崩积体渗透特性的影响[J]. 水土保持学报,2017,31(3):85-90,95. Zhan Zhenzhi, Huang Yanhe, Jang Fangshi, et al. Effects of content and size of gravel on soil permeability of the colluvial deposit in Benggang[J]. Journal of Soil and Water Conservation, 2017, 31(3): 85-90, 95. (in Chinese with English abstract)

[19] 胡廷飞,王辉,胡传旺,等. 砾石覆盖厚度对斥水土壤入渗特性的影响及模型优选[J]. 水土保持学报,2019,33(2):17-22,29. Hu Tingfei, Wang Hui, Hu Chuanwang, et al. Effect of thickness of gravel cover on infiltration characteristics of water repellent soils and its model optimization[J]. Journal of Soil and Water Conservation, 2019, 33(2): 17-22, 29. (in Chinese with English abstract)

[20] Koutous A, Hilali E. Grain shape effects on the mechanical behavior of compacted earth[J]. Case Studies in Construction Materials, 2019, 11: e00303.

[21] 郝腾飞,喻邦江. 粗颗粒含量对砾石土抗剪强度影响的试验研究[J]. 地质灾害与环境保护,2018,29(3):73-76. Hao Tengfei, Yu Bangjiang. Experimental study on the effect of coarse particle content on shear strength of gravel soil[J]. Journal of Geological Hazards and Environment Preservation, 2018, 29(3): 73-76. (in Chinese with English abstract)

[22] 吉恩跃,陈生水,朱俊高,等. 不同掺砾量下砾石土抗拉强度试验研究[J]. 岩土工程学报,2019,41(7):1339-1344. Ji Enyue, Chen Shengshui, Zhu Jungao, et al. Experimental research on tensile strength of gravelly soil under different gravel contents[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1339-1344. (in Chinese with English abstract)

[23] 王蕙,卢德宝,黄冬菁,等. 不同砾石存在形式红壤坡面侵蚀特征的比较[J]. 中国水土保持科学,2019,17(4):49-58. Wang Hui, Lu Debao, Huang Dongjing, et al. On the erosion characteristics of red soil slope with different gravel existence forms[J]. Science of Soil and Water Conservation, 2019, 17(4): 49-58. (in Chinese with English abstract)

[24] 郑腾辉,周旺,刘涛,等. 连续模拟降雨下岩溶区含砾石堆积体坡面径流产沙特征[J]. 水土保持学报,2020,34(3):55-60. Zheng Tenghui, Zhou Wang, Liu Tao, et al. Characteristics sediment yield and runoff of the slope surface of gravel accumulation in Karst area under continuous simulated rainfall[J]. Journal of Soil and Water Conservation, 2020, 34(3): 55-60. (in Chinese with English abstract)

[25] 中华人民共和国水利部. 土工试验方法标准(GB/T 50123—1999)[S]. 北京:中国计划出版社,1999.

[26] 卫杰,张晓明,丁树文,等. 黄麻纤维加筋条件对崩岗岩土无侧限抗压强度的影响[J]. 水土保持学报,2015,29(6):59-63. Wei Jie, Zhang Xiaoming, Ding Shuwen, et al. Effects of reinforcement conditions of jute fiber on unconfined compressive strength of soil in collapsing hill[J]. Journal of Soil and Water Conservation, 2015, 29(6): 59-63. (in Chinese with English abstract)

[27] 刘清秉,项伟,Lehane B M,等. 颗粒形状对砂土抗剪强度及桩端阻力影响机制试验研究[J]. 岩石力学与工程学报,2011,30(2):400-409. Liu Qingbing, Xiang Wei, Lehane B M, et al. Experimental study of effect of particle shapes on shear strength of sand and tip resistance of driven piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 400-409. (in Chinese with English abstract)

[28] Dodds J S. Particle Shape and Stiffness-Effects on Soil Behavior[D]. Atlanta: Georgia Institute of Technology, 2003.

Effects of gravel addition on unconfined compressive strength of Benggang soil

Yang Caidi1,2, Niu Yuhua1, Zhang Xiaoming1,3※, Wei Jie1, Zuo Zhiling1, Zhang Ruiyu1

(1.,,430070,; 2.,,310058,; 3.,,430070,)

Benggang, a typical geo-hazard, is widely distributed in the granite area of southern China. It is characterized by strong sudden onset and rapid development, and is usually accompanied by a large amount of soil and water loss, which poses a serious threat to the ecological environment. Previous studies have focused on Benggang soil erosion process and the influencing factors, sediment yield characteristics and hydrodynamics mechanism.However, there is still limited study on mechanical strength effect of gravel addition on Benggang soil and its engineering application. This study explored the effects of gravel addition on unconfined compressive strength of Benggang soil. Different combinations of gravel content (5%, 10%, and 15%), diameter (2-4, 5-7, and 8-10 mm), and shape (round and angular gravels) were considered. In addition, soil without gravel addition was considered as control. In June 2018, the Benggang soil was sampled. Eluvial layer A, argic layer Bt, deposition layer B, and parent layer C were distributed along the soil profile. The physic-chemical properties of these soil samples were measured. The unconfined compressive strength values of different combinations of soils were also determined. The results showed that the eluvial layer A had relatively uniform particle size, good structure, and fine texture. However, the contents of particle sizes differed greatly in the other three layers, with weak adhesive, poor texture, and loose particles. The average value of unconfined compressive strength of different combinations was the highest in the eluvial layer A, followed by argic layer Bt, deposition layer B and parent layer C. The unconfined compressive strengths of four soil layers were higher in combinations of 15% gravel content, diameter of 2-4 and 5-7mm, and round shape. The gravel additions increased soil compressive strength by elevating the friction, cohesion and occlusion area of soil particles. The axial stress of all combinations showed the same variation tendency with the increase of axial strain, with four stages of rapid increase, sharp decrease, slow decrease and stable decrease. The axial stress of soil with gravel addition was higher than that of soil without gravel, especially in the eluvial layer A and argic layer Bt. Compared with soil without gravel addition, the unconfined compressive strength of soil with gravel addition increased by 59.56% (eluvial layer A), 71.70% (argic layer Bt), 49.51% (deposition layer B), and 83.64% (parent material layer C), respectively. A positive linear function could describe the relationship between the compressive strength of soil with and without gravels in the four soil layers. Thus, the addition of gravel enhanced the mechanical strength of Benggang soil obviously. The broken degree of soil without gravel was more severe than that of soil with gravel. Overall, the addition of gravel improved soil compressive strength, while the compressive mechanism in different soil layers was quite different. The difference was affected by the friction and concavity of particle shape, and the physic-chemical properties for different soil layers. The results above laid basis for the prevention and control of Benggang erosion, and proposed engineering practice instructions for the treatment of different soil layers.

gravels; soils; correlation; Benggang; unconfined compressive strength; stress-strain; failure pattern

杨彩迪,牛玉华,张晓明,等. 添加砾石对崩岗岩土无侧限抗压强度的影响[J]. 农业工程学报,2020,36(24):118-124.doi:10.11975/j.issn.1002-6819.2020.24.014 http://www.tcsae.org

Yang Caidi, Niu Yuhua, Zhang Xiaoming, et al. Effects of gravel addition on unconfined compressive strength of Benggang soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 118-124. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.014 http://www.tcsae.org

2020-07-29

2020-10-10

国家自然科学基金项目(41771307、41201271);长江科学院开放研究基金资助项目(CKWV2017522/KY);华中农业大学“国家级大学生创新创业训练计划”项目(105042016015);华中农业大学“大学生科技创新基金”项目(SRF)(2016076)

杨彩迪,博士生,主要从事土壤物理和养分互作研究。Email:11714043@zju.edu.cn

张晓明,博士,副教授,主要从事土壤侵蚀和森林水文研究。Email:zxm_huanong@mail.hzau.edu.cn

10.11975/j.issn.1002-6819.2020.24.014

S152.9;TU411.6

A

1002-6819(2020)-24-0118-07

猜你喜欢
侧限砾石土体
基于渐近法的城市近接地下空间有限土体土压力计算方法研究
碱渣膨胀土混合填料路用性能测试
考虑砾石颗粒形状及含量影响的砂-砾石混合物离散元模拟直剪试验
纳米固化剂配比设计及固土力学性能研究
砾石聚合物仿石艺术地坪施工技术
地铁砂质地层深基坑土压力研究
Task 3
砾石含量对土壤可蚀性因子估算的影响*
软黏土中静压桩打桩过程对土体强度和刚度影响的理论分析
无机土壤固化剂路基改良效果及应用研究