王艳清, 宋光永, 刘占国, 李森明, 魏学斌, 夏志远,王 鹏, 朱 超, 邢 超
(1.中国石油杭州地质研究院,浙江杭州 310023; 2.中国石油青海油田公司,甘肃敦煌 736202)
柴达木盆地新生代为咸化湖盆沉积[1-2],盆缘区发育陆源碎屑岩沉积物[3-5],盆内斜坡区广泛发育湖相碳酸盐岩沉积物[6-7]、洼陷区发育膏盐岩[8]和泥晶灰/云岩沉积物。碳酸盐岩是柴达木盆地重要油气储集体类型,在英西、跃西、南翼山等地区发现了规模油藏,储集层岩石类型有藻灰/云岩、颗粒灰/云岩、泥晶灰/云岩等,碳酸盐岩分布规律及控制因素成为亟待讨论的重要议题。国内外学者对海相碳酸盐岩开展了大量研究工作[9-11],针对微生物岩[12-14]和湖相碳酸盐岩[15-17]的研究也取得了不少成果,从岩石学特征、分布规律、发育模式、成因机制、模拟试验等方面开展过深入探讨。柴达木盆地碳酸盐岩储层的研究始于20世纪末期,寿建峰等[18-21]在盆地内开展过碳酸盐岩储层特征研究,多为碳酸盐岩特征、分布规律描述,对盆地内碳酸盐岩成因研究及发育模式的探讨较少。基于多年来对盆地碳酸盐岩的研究,笔者系统总结新生代湖相碳酸盐岩类型及发育模式。
柴达木盆地位于青藏高原北部,周边被昆仑山、阿尔金山和祁连山环绕(图1),盆地东西长850 km、南北宽150~300 km,面积121 000 km2,中新生界沉积面积96 000 km2,沉积岩最大厚度17 200 m。野外露头、钻井、地震等资料揭示,柴达木盆地发育中、新生代地层,新生代地层主要有古近系路乐河组(E1+2)、下干柴沟组下段(E31),下干柴沟组上段(E32);新近系上干柴沟组(N1)、下油砂山组(N21)、上油砂山组(N22)、狮子沟组(N23)和第四系7个泉组(Q)(图2)。新生代受喜马拉雅运动及干旱古气候的控制,湖盆经历湖进—湖退的完整演化过程,形成了良好的生-储-盖组合,碳酸盐岩发育层位有下干柴沟组下段(E31)、下干柴沟组上段(E32)、上干柴沟组(N1)、下油砂山组(N21)、上油砂山组(N22)及狮子沟组(N23)。
前人用微量元素研究建立了沉积环境判别标准[22-25]:Sr/Ba>1为咸水介质,0.61≤Sr/Ba≤1为半咸水介质,Sr/Ba<0.61为淡水介质;Sr/Cu<10为温湿气候,Sr/Cu>10为干热气候;V/Ni>1为还原环境;0≤Th/U≤2为缺氧—贫氧环境,Th/U>8为强氧化环境。通过对下干柴沟组上段的13口井120多块样品元素测试数据进行定量、半定量化分析(表1),古近系下干柴组上段(E32)沉积时期,Sr/Cu>10表明为干旱炎热的古气候;Sr/Ba为0.15~1.22,表明古盐度为淡水—半咸水—咸水—卤水,湖盆水体逐渐咸化并最终出现硬石膏、芒硝、石盐;Th/U为1.47~4.69、V/Ni>1,表明处于富氧—缺氧环境。
图2 柴达木盆地新生代地层综合柱状图Fig.2 Integrated histogram of Cenozoic strata in Qaidam Basin
表1 柴达木盆地新近系元素测试分析数据
Table 1 Data analysis of Neogene elements in Qaidam Basin
井号Sr/(mg·kg-1)Ba/(mg·kg-1)Sr/BaV/(mg·kg-1)Ni/(mg·kg-1)V/NiCo/(mg·kg-1)Cu/(mg·kg-1)Sr/CuTh/(mg·kg-1)U/(mg·kg-1)Th/U C692911000.8469.934.82.011.432.528.67.415.041.47 H397016681.0595.836.52.614.532.221.710.906.281.73 Q3095515390.6267.731.22.210.826.635.98.443.952.14 QN13665450.6777.931.92.414.021.517.011.804.282.76 ST11344600.2997.537.72.616.136.13.714.903.184.69 S151955160.38136.037.33.615.512.915.213.003.403.84 S23150598630.1559.725.72.39.3622.965.87.664.191.83 S252682201.2280.125.33.210.722.112.17.744.721.64 S3556531900.1884.333.82.513.628.819.612.504.812.61 SB188943450.2060.125.02.49.9323.837.37.704.151.86 Y678937590.2156.624.92.39.8123.433.67.403.142.36
注:表中数据为部分测试及分析数据。
根据盆地野外露头、钻井取芯资料、偏光显微镜及全岩矿物成分实验测试(表2)等,按照成因将湖相碳酸盐岩划分为两大成因类型:一类是生物成因类碳酸盐岩,主要为藻灰/云岩类,按产状可细分为藻团块灰/云岩、藻叠层灰/云岩、藻纹层灰/云岩、藻泥晶灰/云岩;另一类是机械与化学复合成因,包括为颗粒灰/云岩(也称粒屑灰岩)及泥晶灰/云岩等,颗粒灰/云岩按粒级可细分为砾屑灰/云岩、砂屑灰/云岩、粉屑灰/云岩。
2.1.1 生物成因类型碳酸盐岩
Burne[26]最早提出了微生物岩(microbolite)一词,是由底栖微生物群落(BMC)捕获和黏结碎屑沉积物,或经与微生物活动相关的无机或有机诱导矿化作用在原地形成的沉积物(岩)[27-28],即为生物成因碳酸盐岩,柴达木盆地新生代生物成因类型碳酸盐岩主要为藻灰/云岩类。根据藻灰/云岩的全岩矿物成分测试数据(表2,表中数据为矿物成分的体积分数),碳酸盐岩组分体积分数为52%~88%(其中方解石组分体积分数为11%~75%,白云石体积分数为9%~71%,以铁白云石为主),石英+长石体积分数为2%~28%,黏土矿物体积分数为3%~31%。藻灰/云岩类碳酸盐岩根据产状细分为藻叠层灰/云岩、藻纹层灰/云岩、藻团块灰/云岩及藻泥晶灰/云岩(图3)。
表2 柴西地区碳酸盐岩全岩矿物测试资料(部分)Table 2 Test data of total rock minerals in carbonate rocks in western Qaidam Basin(part) %
注:“—”代表含量低于检查下限。
(1)藻叠层灰/云岩。在滨浅湖的高能、清水、富氧环境中,藻呈叠锥状或柱状生长形成藻叠层灰/云岩,主要包括富藻纹层和贫藻纹层,富藻纹层形成于适合藻类生长的非风暴期,以藻类为主,颜色暗,贫藻纹层由于受风暴环境影响,藻灰不发育,藻纹层不明显,颜色浅,藻叠层灰/云岩的规模一般很小,厚度最大仅25 cm。柴达木盆地粗枝藻常见,藻体之间充填有藻泥晶灰/云岩、泥晶灰/云岩、陆屑泥晶灰/云岩和颗粒灰/云岩等(图3(a)、(b))。
(2)藻纹层灰/云岩。在浅湖的清水、富氧环境中,在水动力条件较弱的条件下,藻呈水平纹层状或波状生长形成藻纹层灰/云岩,泥质、粉砂质等碎屑物含量低或不含藻丝体,具早期固结作用,形成藻架孔(图3(c)、(d))。
(3)藻团块灰/云岩。在高能的滨浅湖环境中,由藻体分泌的黏液不断捕集黏结灰泥形成藻团块,呈不规则的多边形或团块状,规模较大,厚度一般为1~5 m,最厚可达8 m,内部碎屑物泥质含量较高,藻团块粒径0.2~5 mm不等,多为1~2 mm。压实作用较强,使得藻团块紧密相接,团块之间易发生淡水淋溶,形成藻格架次生溶孔,溶孔发育,但藻团块自身几乎不溶解(图3(e)~(g))。
(4)藻泥晶灰/云岩。藻泥晶灰/云岩是较常见的碳酸盐岩石类型,主要形成于低能滨浅湖环境,其特征是藻纹层及藻叠层构造不明显,但具藻结构(藻丝体)特征,含陆源碎屑。藻泥晶灰/云岩的溶蚀孔不发育,仅局部见到(图3(h)、(i))。
2.1.2 机械与化学复合成因类碳酸盐岩
过去一直认为碳酸盐岩沉积物只有化学成因,现在的观点认为碳酸盐岩的沉积受到水动力的控制作用,在结构和构造上有所反映。从20世纪70年代发现的鲕粒、团粒、生物骨架、内碎屑等碳酸盐岩颗粒等,认为是经过机械搬运堆积起来的。柴达木盆地机械与化学复合成因的碳酸盐岩主要有颗粒灰/云岩和泥晶灰/云岩。
(1)颗粒灰/云岩类。颗粒灰/云岩亦称为粒屑灰岩,是指颗粒体积分数大于50%的石灰岩,颗粒有内碎屑、鲕粒、生物碎屑、藻粒、球粒等。根据颗粒灰/云岩全岩矿物成分测试数据(表2),碳酸盐岩组分体积分数为37%~50%(其中方解石组分体积分数为13%~32%,白云石体积分数为15%~38%,以铁白云石为主),石英+长石体积分数为29%~37%,黏土矿物体积分数为12%~27%。按照粒径大小,划分为砾屑灰/云岩(图4(a)、(b))、砂屑灰/云岩(图4(c)、(d)、(f))、粉屑灰/云岩(图4(e))。
图3 柴达木盆地新生代藻灰/云岩类典型照片Fig.3 Typical photographs of Cenozoic algal limestone in Qaidam Basin
(2) 泥晶灰/云岩。泥晶灰/云岩又称为灰泥岩、微晶灰/云岩,是碳酸盐岩主要类型之一,几乎全由粒径为0.001~0.004 mm的灰泥组成,仅含少量异化粒,它在结构上相当于陆源黏土岩,常形成于低能环境。根据泥晶灰/云岩全岩矿物成分测试数据(表2),碳酸盐岩组分体积分数为30%~86%(其中方解石组分体积分数为9%~28%,白云石体积分数为8%~69%,以铁白云石为主),石英+长石体积分数为2%~45%,黏土矿物体积分数为5%~30%。可细分为纹层状泥晶灰/云岩(图5(a)、(b))、块状泥晶灰/云岩(图5(c)),纹层状泥晶灰/云岩可见层间缝。
对柴达木盆地新近系钻井取芯碳酸盐岩层段进行岩心(柱塞)取样,依据SY/T 5336-2006《岩心分析方法》采用Ultra Pore-400型孔隙度测定仪和DX-07G型渗透率测定仪进行岩石孔隙度、渗透率测试,孔隙度分布在5%~28%,渗透率分布区间较大,最高可达到2 484×10-3μm2,最低小于0.01×10-3μm2(表3)。
图4 柴达木盆地新生代颗粒灰/云岩类典型照片Fig.4 Typical photographs of Cenozoic granular limestone in Qaidam Basin
图5 柴达木盆地新生代泥晶灰/云岩典型照片Fig.5 Typical photographs of Cenozoic argillaceous limestone in Qaidam Basin
表3 柴达木盆地新近系碳酸盐岩孔隙度、渗透率测试数据(部分)
Table3TestdataforporosityandpermeabilityofNeogenecarbonaterocksinQaidamBasin(part)
井号岩性孔隙度/%渗透率/10-3 μm2井号岩性孔隙度/%渗透率/10-3μm2 NQ3-3砂质颗粒灰/云岩14.864.06J2藻叠层灰/云岩15.100.20 NQ5-5颗粒灰/云岩8.530.03JX1藻纹层灰/云岩8.300.16 NQ5-5砂质颗粒灰/云岩13.880.16L101藻团块灰/云岩21.30— ST1颗粒灰/云岩6.900.03L101藻团块灰/云岩28.10— Y69砂质颗粒灰/云岩26.60125.50L101藻叠层灰/云岩15.60— Y84颗粒云灰/云岩9.40<0.05N102藻纹层灰/云岩12.000.76 Y87颗粒灰/云岩7.80<0.02NQ5-5藻叠层灰/云岩15.450.01 YH106X砂质颗粒灰/云岩10.3720.31Q6-5藻叠层灰/云岩19.147.15 H34泥晶灰/云岩5.301.60Q6-5藻纹层灰/云岩9.510.02 K3泥晶灰/云岩20.900.50ST1藻纹层灰/云岩7.400.02 L101泥晶灰/云岩19.500.29W11-1401藻团块灰/云岩17.9031.10 L3泥晶灰/云岩16.900.08W11-1401藻团块灰/云岩17.07110.40 Q6-5泥晶灰/云岩10.400.04X20藻叠层灰/云岩16.600.02 Q6-5泥晶灰/云岩8.220.01X21藻纹层灰/云岩8.100.01 WD3泥晶灰/云岩5.000.0Y109藻团块灰/云岩23.11— WD6泥晶灰/云岩5.34<0.02Y109藻团块灰/云岩18.82— Y69泥晶灰/云岩18.002.40Y15藻叠层灰/云岩15.7018.70 Y84泥晶灰/云岩9.501.21Y69藻叠层灰/云岩15.0013.80 Y87泥晶灰/云岩9.54<0.02Y69藻团块灰/云岩19.50471.60 YH106X泥晶灰/云岩10.660.03Y69藻团块灰/云岩25.0033.90 YH106X泥晶灰/云岩6.68<0.02Y69藻团块灰/云岩27.90191.40 YH106X泥晶灰/云岩13.120.07Y84藻团块灰/云岩16.7042.78 YH106X泥晶灰/云岩7.53<0.02Y87藻纹层灰/云岩5.05<0.02F4藻纹层灰/云岩7.400.10YH106X藻叠层灰/云岩12.000.02F5藻纹层灰/云岩6.370.26
注:“—”代表未计算渗透率,只测量核磁孔隙度。
从不同类型碳酸盐岩的孔隙度对比(表4)分析,藻灰/云岩储层物性最好,孔隙度为5.05%~28.1%,平均为15.39%;其次为颗粒灰/云岩,孔隙度为6.9%~26.9%,平均为13.85%;泥晶灰/云岩,孔隙度为5.0%~20.9%,平均为11.50%。另外,从单一类型碳酸盐岩孔隙度分析(表5)来看,藻灰/云岩孔隙度集中分布在15%~20%,分布频率占43.2%,不同类型藻灰岩的储层物性亦有差异性;颗粒灰/云岩孔隙度集中分布在10%~20%,分布频率占71.4%;泥晶灰/云岩孔隙度集中分布在10%~15%,分布频率占78.2%。
表4 柴达木盆地不同类型碳酸盐岩孔隙度对比Table 4 Porosity comparison of different types of carbonate rocks in Qaidam Basin
表5 柴达木盆地不同类型碳酸盐岩孔隙度分布频率对比
基于前人的碳酸盐岩研究成果,结合柴达木盆地碳酸盐岩发育特征,划分藻丘(席)、颗粒滩、灰/云坪3种沉积微相类型。
藻丘(席):发育在滨浅湖亚相内,在清水、富氧环境中。在水动力条件相对较强条件下发育藻团块灰/云岩、藻叠层灰/云岩、生屑灰/云岩,形成藻丘;在水动力条件相对较弱条件下发育藻纹层灰/云岩、藻泥晶灰/云岩,形成藻席。盆地内西岔沟剖面E32发育藻丘沉积(图6),单个藻丘的长度为2.5 m,宽度为1.5 m,高度为1.7 m,藻丘之间为泥晶灰/云岩、灰质泥岩沉积;纵向自下向上的沉积序列依次为扇三角洲前缘亚相水下分流河道微相,岩性为灰色、棕灰色砾岩、砂砾岩、细砂岩—粉砂岩,见槽状交错层理、交错层理、冲刷面,向上变为滨浅湖亚相沉积,底部岩性为反粒序的砂岩—砾状砂岩,向上变为鲕粒灰/云岩、细砂岩,顶部为藻团块灰/云岩(图7)。
颗粒滩:发育在滨浅湖亚相内,水体较浅,水动力条件相对较强,岩性为颗粒灰/云岩。盆地内西岔沟剖面N21发育藻丘-颗粒滩沉积(图8),藻丘发育在颗粒滩上,藻丘的高度为2.5~4.2 m,藻丘间为泥晶灰/云岩,颗粒滩岩性为鲕粒灰/云岩,厚度为0.5~1.5 m,横向分布相对较稳定。
图6 柴达木盆地西岔沟剖面藻丘典型照片Fig.6 Typical photograph of algal dunes from Xichagou outcrop in Qaidam Basin
灰/云坪:发育在滨浅湖亚相内,水体较深,水动力条件相对较弱,岩性为泥晶灰/云岩。
根据柴达木盆地野外露头、钻井取芯资料、测井资料及区域地质资料等综合分析,碳酸盐岩发育4种沉积组合样式,即颗粒滩-灰/云坪、颗粒滩(鲕粒滩)-藻丘、藻席-灰/云坪、颗粒滩-藻丘(席)-灰/云坪4种组合样式。
图7 柴达木盆地西岔沟剖面藻丘沉积序列Fig.7 Sequence diagram of algal dunes at Xichagou section of Qaidam Basin
图8 柴达木盆地西岔沟剖面N21藻丘-颗粒滩沉积序列Fig.8 Sequence diagram of N21 algal and granular beach in Xichagou section of Qaidam Basin
颗粒滩-灰/云坪组合样式:发育于英西地区E32地层中,主要发育在盆地洼陷区,局部地区形成古低隆起,在低隆起的顶部发育颗粒滩微相(岩性主要为砾屑灰/云岩、砂屑灰/云岩、粉屑灰/云岩),在其侧缘发育灰/云坪微相(岩性主要为泥晶灰/云岩),发育模式见图9。
颗粒滩(鲕粒滩)-藻丘碳酸盐岩沉积组合样式:见于西岔沟剖面N21地层中,主要发育于盆地斜坡区的滨浅湖沉积背景,在鲕粒滩微相(岩性主要为鲕粒灰/云岩)之间的洼地发育藻丘微相(岩性主要为藻团块灰/云岩),发育模式见图10。
藻丘/席-灰/云坪碳酸盐岩沉积组合样式:见于西岔沟剖面E32地层中,发育于湖盆边缘,在高能环境中发育混积颗粒滩,在陆源碎屑物供给不充分时,在低能环境中发育藻席(丘)。纵向上自下而上依次为扇三角洲水分流河道微相(岩性为砂砾岩、砾状砂岩)、滨浅湖滩坝微相(岩性为含鲕粒砂岩、砾状砂岩)、藻席(岩性为藻团块灰/云岩、含碎屑藻鲕灰/云岩);横向上从盆缘向湖盆中心依次为藻席、灰/云坪(岩性为泥晶灰/云岩、泥灰岩),发育模式见图11。
颗粒滩-藻丘(席)-灰/云坪组合样式:发育于尕斯-跃进E32、南翼山N2等地层中,主要发育于宽缓斜坡区的古隆起上,陆源碎屑供给不充分,在隆起的顶部发育藻丘(席)微相(岩性主要为藻灰/云岩类),在其向陆一侧发育颗粒滩微相(岩性主要为颗粒灰/云岩),在其向盆一侧发育灰/云坪微相(岩性主要为泥晶灰/云岩),发育模式见图12。
图9 颗粒滩-灰/云坪碳酸盐岩发育模式Fig.9 Development pattern of carbonate rocks in granule beach ash/Yunping Plateau
图10 颗粒滩(鲕粒滩)-藻丘碳酸盐岩发育模式Fig.10 Development pattern of granular Beach (oolitic beach)-algal dune carbonate rock
图11 藻席-灰/云坪碳酸盐岩发育模式Fig.11 Development pattern of algal dust ash/Yunping carbonate
图12 颗粒滩-藻丘(席)-灰/云坪碳酸盐岩发育模式Fig.12 Development pattern of carbonate rocks in granular beach algal mound(MAT)-ash/Yunping
柴达木盆地新生代在咸化湖盆水体、隆-洼相间的古地形、频繁湖平面升降变化、差异性碎屑物供给等因素综合控制下,碳酸盐岩分布具有纵向层系多、横向上迁移发育、平面叠合连片分布等特征。
碳酸盐岩随沉积中心变化具有迁移特征(图13):主要分布于滨浅湖亚相中,下干柴沟组(E3)、上干柴沟组(N1)时期主要分布在柴西南区的跃进、尕斯、花土沟、狮子沟地区;下油砂山组(N21)、上油砂山组(N22)时期随着沉积中心向东、向北迁移,碳酸盐岩迁移到柴西北区的小梁山、南翼山、大风山等地区。
图13 柴西地区跃进-大风山地区碳酸盐岩分布对比Fig.13 Comparison of carbonate distribution in Yuejin and Dafengshan area of western Qaidam Basin
碳酸盐岩的分布受到古地貌沉积背景控制(图14),在盆地斜坡区,在陆源碎屑供给欠补偿时期,在局部古隆起部位发育藻丘(席)沉积,在斜坡部位发育灰/云岩坪;在碎屑供给时期,则发育碳酸盐岩颗粒滩-碎屑岩滩坝沉积;在盆地内洼中古低隆起区,湖浪波及区为颗粒滩-块状灰/云坪沉积,未波及区为纹层状灰/云坪沉积。
结合沉积背景、古地貌特征、露头及钻井取芯资料,编制了柴达木盆地新生代碳酸盐岩沉积概略图(图15), 该图为多层系叠合图,仅整体反映沉积岩相的分布特征)。在山前带盆缘区发育辫状河三角洲相、扇三角洲相,在盆内大面积发育湖泊相,而碳酸盐岩主要分布在盆地的西部地区(简称柴西地区)。另外,从不同类型碳酸盐岩分布来看,灰/云坪分布范围较广,呈现出大面积、叠合连片的分布特征,藻丘(席)-颗粒滩(为了便于叙述,将两种类型微相合并)分布范围局限,呈现出局部富集的分布特征。
图14 柴达木盆地不同古地貌背景下碳酸盐岩分布Fig.14 Distribution of carbonate rocks in different Paleogene settings of in Qaidam Basin
图15 柴达木盆地新生代碳酸盐岩平面分布Fig.15 Plane distribution of Cenozoic carbonate rocks in Qaidam Basin
(1)柴达木盆地新生代发育两种成因类型碳酸盐岩储层,即生物成因和机械-化学复合成因。生物成因碳酸盐岩为藻灰/云岩类;机械-化学复合成因碳酸盐岩为颗粒灰/云岩类和泥晶灰/云岩。
(2)柴达木盆地碳酸盐岩发育颗粒滩-灰/云坪、颗粒滩(鲕粒滩)-藻丘、藻席-灰/云坪、颗粒滩-藻丘(席)-灰/云坪4种类型组合样式;灰/云坪储层在柴达木盆地西部地区大面积分布,颗粒滩储层分布水体较浅、水动力条件相对较强的滨浅湖亚相带,藻丘(席)分布在滨浅湖亚相内的清水、富氧环境中。