益生菌对断奶仔猪小肠形态影响的Meta分析

2020-01-21 15:21申远航黄晓灵高利伟吕航郑业鲁王众
南方农业学报 2020年10期
关键词:Meta分析益生菌

申远航 黄晓灵 高利伟 吕航 郑业鲁 王众

摘要:【目的】利用Meta分析對有关益生菌对断奶仔猪小肠形态的影响试验进行评价,为解决仔猪生产过程中的肠道健康问题提供参考依据。【方法】基于中国知网(CNKI)、万方数据(Wanfang Data)、CQVIP、Web of Science及Science-Direct等数据库,全面检索收集益生菌对断奶仔猪小肠形态影响的研究文献,采用RevMan 5.3进行Meta分析。【结果】最终纳入22篇研究文献,试验组和对照组均为137头仔猪,试验组以益生菌作为添加物,对照组为空白。Meta分析结果表明:益生菌组对断奶仔猪十二指肠绒毛高度的影响显著优于空白组(P=0.01,SMD=0.81,95% CI=0.19~1.44),对隐窝深度的影响显著低于空白组(P=0.0008,SMD=-0.74,95% CI=-1.18~-0.31);益生菌组对空肠绒毛高度的影响显著优于空白组(P<0.0001,SMD=0.97,95% CI=0.49~1.46),对隐窝深度的影响差异不显著(P=0.58,SMD=-0.12,95% CI= -0.56~0.31);益生菌组对回肠绒毛高度的影响显著优于空白组(P=0.0003,SMD=1.20,95% CI=0.55~1.85),对隐窝深度的影响差异不显著(P=0.09,SMD=-0.58,95% CI=-1.25~0.10)。根据益生菌的菌属进行亚组分析,结果显示,酵母菌属组和复合菌株组对十二指肠、空肠的绒毛高度无影响,乳杆菌属组和肠球菌属组可显著提高十二指肠、空肠、回肠的绒毛高度。敏感性分析结果较稳健;发表偏倚结果显示有一定的发表偏倚,但偏倚程度不明显。【结论】益生菌通过显著提高十二指肠、空肠和回肠的绒毛高度及降低十二指肠隐窝深度,以改善断奶仔猪小肠的形态结构,其中,乳杆菌属组和肠球菌属组对绒毛高度的影响较显著,复合益生菌对十二指肠隐窝深度的影响显著。即益生菌在保护小肠肠道健康方面具有重要潜力,但需要注意同属不同菌种间的差异。

关键词: 断奶仔猪;益生菌;小肠形态;绒毛高度;隐窝深度;Meta分析

中图分类号: S816.73                            文献标志码: A 文章编号:2095-1191(2020)10-2546-11

Effects of probiotics on small intestine morphology of weaned piglets by Meta analysis

SHEN Yuan-hang, HUANG Xiao-ling, GAO Li-wei, LYU Hang,

ZHENG Ye-lu*, WANG Zhong

(Guangdong Guangken Animal Husbandry Engineering Research Institute, Guangzhou  510000, China)

Abstract:【Objective】Meta analysis was used to evaluate the effects of probiotics on intestinal morphology of weaned piglets, so as to provide reference for solving the intestinal health problems in the production process of piglets.【Method】Based on databases like CNKI,Wanfang Data,CQVIP,Web of Science and ScienceDirect,  the literature on the effects of probiotics on the small intestine morphology of weaned piglets were comprehensively collected, and  Review Manager 5.3 software was used for Meta analysis. 【Result】A total of 22 studies were included. The test group consisted of 137 piglets and the control group consisted of 137 piglets. The test group was supplemented with probiotics and the control group was blank.The Meta analysis results showed that the effects of duodenal villus height in the probiotic group was significantly better than that in the blank control group(P=0.01, SMD=0.81,95% CI=0.19-1.44), and the crypt depth was significantly lower than that in the blank control group(P=0.0008, SMD=-0.74,95% CI=-1.18- -0.31). The effects on the villi height of jejunum was significantly better than that of the blank control group(P<0.0001, SMD=0.97, 95% CI=0.49-1.46), and the difference in crypt depth effect was not significant(P=0.58, SMD=-0.12,95% CI=-0.56-0.31); the effect of the probiotic group on the villi height of ileum was significantly better than that of the blank control group(P=0.0003,SMD=1.20,95% CI=0.55-1.85), and there was no significant difference in the effect of crypt depth (P=0.09, SMD= -0.58,95% CI=-1.25-0.10). According to the subgroup analysis of the probiotic bacteria, the results showed that the yeast group and the compound bacteria group had no effect on the height of  duodenum and jejunum villi. The Lactobacillus group and the Enterococcus group could significantly improve the height of duodenum, jejunum and ileum villi. The results of the sensitivity analysis were relatively robust. The results of publication bias showed a certain degree of publication bias, but the degree of bias was not large. 【Conclusion】Probiotics can significantly increase the villi height of the small intestine(duodenum, jejunum, ileum) and reduce duodenal crypt depth in weaned piglets to improve the morphological structure of the small intestine of weaned piglets. Lactobacillus group and the Enterococcus group have significant effects on the height of the villi, and the composite strain has significant effect on the duodenal crypt depth. Probiotics have important potential in protecting the health of the small intestine, but it is necessary to pay attention to the differences between different species of the same genus.

Key words: weaned piglets; probiotics; small intestine morphology; villus height; crypt depth; Meta analysis

Foundation item: National Key Research and Development Program of China(2018YFF0213500)

0 引言

【研究意义】断奶是仔猪生命周期中的一项重要事件。饲粮、饲养人员及饲养环境等因素改變造成的多重应激,通常致使仔猪肠道的功能和结构发生改变,引发肠道炎症反应,损害肠道绒毛结构(Spreeuwenberg et al.,2001;Pié et al.,2004),进而引起肠黏膜受损及菌群失调(Fouhse et al.,2016;Gresse et al.,2017),临床上则表现为腹泻。使用抗生素和免疫方式虽然能有效预防仔猪腹泻的发生,但同时存在诸多弊端,为了保证食品安全,符合绿色生产的理念,众多替代抗生素添加剂已广泛应用于生猪养殖业,包括有机酸、益生菌、精油、中药及植物提取物等(Heo et al.,2013;Sezen,2013),其中又以益生菌应用最广泛。目前,有关益生菌对断奶仔猪肠道形态的影响尚存在争议,因此有必要进一步明确益生菌对断奶仔猪小肠形态影响的作用机理,为断奶仔猪养殖生产提供科学依据。【前人研究进展】益生菌是一类对宿主有益的活性微生物统称,通常具有重建微生物群平衡、预防病原菌感染及增强肠道屏障等功能(Scharek-Tedin et al.,2015;Yang et al.,2016)。早在1999年6月我国农业部第105号文件发布的《允许使用的饲料添加剂品种目录》中就收录了12种微生物饲料添加剂,2006年我国农业部658号公告《饲料添加剂品种目录(2006)》中规定在饲料添加剂中可用的微生物增至16种,至2014年施行的《饲料添加剂品种目录(2013)》中可用于养殖动物生产的微生物已达30种。已有研究表明,投喂适量益生菌对断奶仔猪的小肠绒毛长度、隐窝深度、产黏液细胞数量和黏液层厚度均有积极影响(Le et al.,2010),且益生菌数量的增加可抑制有害菌在肠道内黏附(Herias et al.,1999)。此外,益生菌可发酵肠道内的碳水化合物产生短链脂肪酸,如乳酸和醋酸,导致肠道pH降低,而致使有害菌不耐受(Bajagai et al.,2016),并产生抗氧化剂、抗菌肽(防御素)、大黄酸及细菌素等抑菌物质(Eswara et al.,2010;Hou et al.,2016),在断奶仔猪生产上发挥着重要作用。苏琴(2015)研究证实,以1%或2%复合益生菌添加至断奶仔猪的饲料中,其平均日增重较空白对照组断奶仔猪提高36.46%;洪伟彬(2016)研究表明,添加植物乳杆菌和罗伊氏乳杆菌可提高断奶仔猪肠道黏膜免疫球蛋白A的含量,进而提高其免疫力。但由于市售益生菌的组成及质量参差不齐,导致其研究结论尚未得到广泛认可。部分学者认为益生菌对断奶仔猪日增重无显著影响(周盟等,2013),或含有不确定因子会影响仔猪生长性能(贡筱等,2014)。【本研究切入点】Meta分析的主要目的是增加统计检验效能,对多个同类独立研究的结果进行汇总与合并分析,以达到增大样本含量、提高检验效能的效果,在畜牧兽医学上已有应用(杨健等,2016;牛志伟等,2017),但至今未见采用Meta分析评价益生菌对断奶仔猪小肠形态影响的报道。【拟解决的关键问题】基于中国知网(CNKI)、万方数据(Wanfang Data)、CQVIP、Web of Science及ScienceDirect等数据库已发表的文献信息资源,利用Meta分析对有关益生菌对断奶仔猪小肠形态的影响试验进行评价,以期为解决仔猪生产过程中的肠道健康问题提供参考依据。

1 材料与方法

1. 1 检索策略

计算机检索中国知网(CNKI)、万方数据(Wanfang Data)、CQVIP、Web of Science及ScienceDirect等数据库,检索年限为建库至今。中文检索关键词包括断奶仔猪、仔猪、益生菌和小肠形态;英文检索关键词包括Weaned Piglets、Piglets、Probiotics和Small intestine morphology。根据不同数据库的特征,分别采用主题词与自由词相结合的方式进行文献收集。

1. 2 文献的纳入和排除标准

研究类型:已发表的随机对照试验;研究对象:断奶仔猪,必须健康无疾病;干预措施:饲料中添加益生菌并以空白为对照;结局指标:十二指肠绒毛高度及隐窝深度,空肠绒毛高度及隐窝深度,回肠绒毛高度及隐窝深度;纳入文献中给出结局指标的平均值和标准差(Standard deviation,SD)或标准误(Standard error of mean,SE);文献语言为中文或英文。有以下情况应给予排除:①重复发表和质量较低的文献;②研究对象不是断奶仔猪的文献;③综述类文章、无空白对照组的文献;④数据不全或数据明显有误的文献;⑤试验组干预措施为益生菌以外的治疗方法或益生菌与化学药物联合用药的文献。

1. 3 数据资料提取

从文献中提取以下数据:①题目,第一作者,发表年份;②研究对象,试验组动物总数,对照组动物总数,给药信息(途径、益生菌菌株),饲养天数;③小肠道形态:十二指肠绒毛高度及隐窝深度,空肠绒毛高度及隐窝深度,回肠绒毛高度及隐窝深度。

1. 4 统计分析

运用RevMan 5.3进行数据分析并绘制相关图表,由于所纳入文献结局指标为连续型变量,且研究间测量方法、时间及表达单位不完全一致,故选择标准化均数差(Standardized mean difference,SDM)为效应尺度。考虑到多个研究间潜在的临床或方法学异质性,故使用随机效应模型(Randomized effect model,REM)。该模型会对合并效应进行更保守地估计,如文献中未提供均值和标准差,则根据标准误差、95%可信区间(Confidence interval,CI)或其他统计指标进行计算。为了评估异质性,使用I2 统计量和卡方检验,概率值P<0.05即认为显著;同时进行亚组分析,分析益生菌不同菌属对断奶仔猪小肠形态的影响;并对分析结果进行敏感性分析,评价结果稳定性及探究异质性来源,以漏斗图检验其发表偏倚程度。

2 结果与分析

2. 1 文献检索与筛选结果

按照检索策略共获得文献1545篇,阅读文献题目及摘要,排除非临床研究、综述及重复发表的文献1374篇;再阅读全文,排除未对猪性能进行研究而以分离或选择具有潜在益生菌活性菌株的文献,排除对照组不是空白组的文献,又排除不符合纳入标准的文献149篇,最终纳入文献22篇(表1)。其中,有2篇是使用复合益生菌(2种或2种以上菌属混合,由酵母菌、屎肠球菌、地衣芽孢杆菌及枯草芽孢杆菌混合而成)、有7篇使用酵母菌属,有7篇使用乳杆菌属,有6篇使用肠球菌属。

2. 2 纳入文献的基本特征

研究对象为断奶仔猪,所提取的样本数量为被屠宰采样仔猪头数(表1),试验组和对照组各137头。试验组均将益生菌拌入饲粮中,分别为复合菌株、酵母菌属、乳杆菌属和肠球菌属;对照组无任何添加物。

2. 3 益生菌对断奶仔猪十二指肠绒毛高度影响的Meta分析结果

共有17篇文献研究了益生菌对断奶仔猪十二指肠绒毛高度的影响(图1),包括206头断奶仔猪,Meta分析发现益生菌组与空白组间存在显著的统计学差异(P=0.01,SMD=0.81,95% CI=0.19~1.44)。亚组分析结果表明,酵母菌属组与空白组间无统计学差异(P=0.73,SMD=0.23,95% CI=-1.10~1.57),复合菌株组与空白组间也无统计学差异(P=0.66,SMD=0.59,95% CI=-2.02~3.20),乳杆菌属组与空白组间存在显著的统计学差异(P=0.02,SMD=1.53,95% CI=0.23~2.84),肠球菌属组与空白组间也存在显著的统计学差异(P=0.03,SMD=0.91,95% CI=0.10~1.72)。

2. 4 益生菌对断奶仔猪十二指肠隐窝深度影响的Meta分析结果

共有17篇文献研究了益生菌对断奶仔猪十二指肠隐窝深度的影响(图2),包括206头断奶仔猪,Meta分析结果发现益生菌组与空白组间存在显著的统计学差异(P=0.0008,SMD=-0.74,95% CI=-1.18~ -0.31)。亚组分析结果表明,酵母菌属组与空白组间存在显著的统计学差异(P=0.005,SMD=-0.82,95% CI=-1.39~-0.25),复合菌株组与空白组间也存在显著的统计学差异(P<0.00001,SMD=-2.66,95% CI= -3.77~-1.56),乳杆菌属组与空白组间无统计学差异(P=0.07,SMD=-0.57,95% CI=-1.18~0.04),肠球菌属组与空白组间也无统计学差异(P=0.96,SMD= -0.02,95% CI=-0.64~0.61)。

2. 5 益生菌對断奶仔猪空肠绒毛高度影响的Meta分析结果

共有18篇文献研究了益生菌对断奶仔猪空肠绒毛高度的影响(图3),包括214头断奶仔猪,Meta分析结果显示益生菌组与空白组间存在显著的统计学差异(P<0.0001,SMD=0.97,95% CI=0.49~1.46)。亚组分析结果表明,酵母菌属组与空白组间无统计学差异(P=0.16,SMD=1.08,95% CI=-0.43~2.60),乳杆菌属组与空白组间存在显著的统计学差异(P=0.002,SMD=1.18,95% CI=0.42~1.93),肠球菌属组与空白组间也存在显著的统计学差异(P=0.03,SMD=0.61,95% CI=0.07~1.15)。

2. 6 益生菌对断奶仔猪空肠隐窝深度影响的Meta分析结果

共有18篇文献研究了益生菌对断奶仔猪空肠隐窝深度的影响(图4),包括214头断奶仔猪,Meta分析结果显示益生菌组与空白组间无统计学差异(P=0.58,SMD=-0.12,95% CI=-0.56~0.31)。亚组分析结果表明,酵母菌属组与空白组间无统计学差异(P=0.24,SMD=-0.48,95% CI=-1.29~0.33),乳杆菌属组与空白组间无统计学差异(P=0.40,SMD=-0.33,95% CI=-1.10~0.44),肠球菌属组与空白组间也无统计学差异(P=0.11,SMD=0.43,95% CI=-0.10~0.95)。

2. 7 益生菌对断奶仔猪回肠绒毛高度影响的Meta分析结果

共有17篇文献研究了益生菌对断奶仔猪回肠绒毛高度的影响(图5),包括210头断奶仔猪,Meta分析结果显示益生菌组与空白组间存在显著的统计学差异(P=0.0003,SMD=1.20,95% CI=0.55~1.85)。亚组分析结果表明,酵母菌属组与空白组间存在显著的统计学差异(P=0.02,SMD=2.29,95% CI=0.36~4.22),乳杆菌属组与空白组间存在显著的统计学差异(P=0.004,SMD=1.24,95% CI=0.40~2.08),肠球菌属组与空白组间也存在显著的统计学差异(P=0.04,SMD=0.61,95% CI=0.01~1.21)。

2. 8 益生菌对断奶仔猪回肠隐窝深度影响的Meta分析结果

共有17篇文献研究了益生菌对断奶仔猪回肠隐窝深度的影响(图6),包括210头断奶仔猪,Meta分析结果显示益生菌组与空白组间无统计学差异(P=0.09,SMD=-0.58,95% CI=-1.25~0.10)。亚组分析结果表明,酵母菌属组与空白组间无统计学差异(P=0.56,SMD=0.57,95% CI=-1.38~2.52),乳杆菌属组与空白组间也无统计学差异(P=0.14,SMD=-0.34,95% CI=-0.79~0.11),肠球菌属组与空白组间存在显著的统计学差异(P=0.01,SMD=-1.49,95% CI= -2.64~-0.34)。

2. 9 敏感性分析结果及发表偏倚程度

分别对结局指标[十二指肠(绒毛高度,隐窝深度)、空肠(绒毛高度,隐窝深度)及回肠(绒毛高度,隐窝深度)]进行敏感性分析,结果显示,逐一剔除文献后发现其异质性未得到明显改善,说明上述结局指标分析结果较稳健。使用RevMan 5.3对纳入的文献制作漏斗图,结果(图7)显示各结局指标文献对称性相对较好,仅小部分对称性相对较差。其中,十二指肠绒毛高度、空肠隐窝深度及回肠绒毛高度的文献分布对称性相对较好,说明其发表偏倚程度较小;其余各结局指标文献大部分对称性较好,小部分对称性相对较差,说明有一定的发表偏倚,但偏倚程度不明显。

3 讨论

小肠是营养物质吸收和转运的主要部位,而小肠黏膜形态是影响动物吸收功能的重要因素。小肠绒毛高度的增加和表面积的增大,致使营养物质与小肠营养摄取转运载体的接触面积扩大,而有利于营养物质的吸收(Li et al.,2016)。断奶期间的各种应激易导致肠道上皮屏障功能受损,绒毛长度变短、隐窝深度加深,导致小肠更易渗透(Moeser et al.,2007;Pohl et al.,2017);而小肠炎症反应与其通透性增加有关,可造成毒素、过敏原、病毒及细菌的异常增加,抑制营养物质的吸收。本研究结果表明,益生菌可显著提高十二指肠、空肠和回肠的绒毛高度,与Bontampo等(2006)、Suo等(2012)、Galeano等(2015)的研究结果一致,即给断奶仔猪投喂益生菌可改善肠道上皮紧密连接的完整性,增加小肠绒毛高度。为进一步了解益生菌各菌属成分对小肠形态的影响,本研究根据益生菌的菌属进行亚组分析,结果显示,酵母菌属组和复合菌株组对十二指肠、空肠的绒毛高度无影响,乳杆菌属组和肠球菌属组可显著提高十二指肠、空肠、回肠的绒毛高度,与van der Peet-Schwering等(2007)的研究結果一致,即添加酵母菌对肠道绒毛高度及隐窝深度无明显影响。乳杆菌可降低血清中的内毒素含量,而维护肠道屏障的完整性和通透性(洪伟彬,2016);乳杆菌属和肠球菌属均为动物体内的正常菌群组分,在肠道内的定殖能力强,可形成生理屏障阻止有害细菌黏附,进而改善肠道内环境。

隐窝深度可从侧面评估肠道上皮细胞的更新速度,健康仔猪的隐窝深度通常较低,因此隐窝深度降低代表动物机体黏膜功能改善,吸收能力增强(王斌星等,2016)。本研究结果显示,益生菌对断奶仔猪空肠和回肠的隐窝深度无影响,但对十二指肠隐窝深度影响显著。亚组分析结果也显示,酵母菌属组对回肠和空肠的隐窝深度无影响,但显著降低十二指肠隐窝深度;乳杆菌属组对十二指肠、空肠和回肠的隐窝深度均无影响;肠球菌属组对十二指肠和空肠的隐窝深度无影响,但显著降低回肠隐窝深度;复合菌株组也可显著降低十二指肠隐窝深度。可见,益生菌可显著提高肠道细胞的增殖能力,维持肠道微生态环境平衡,维护肠道物理屏障的正常功能(Tang et al.,2019);而由多菌种组成的复合益生菌可协同发挥各菌种的生物学活性,在动物肠道内获得更好的效果。此外,Meta分析发现某些菌种对断奶仔猪小肠形态无明显影响,可能是由同属不同种或菌种间的特异性所决定,但具体原因有待进一步探究。

本研究结果表明,益生菌可改善断奶仔猪小肠的形态结构,饲喂益生菌后可显著提高断奶仔猪十二指肠、空肠和回肠的绒毛高度,降低十二指肠隐窝深度,即益生菌在保护小肠肠道健康方面具有重要潜力。该结论可为解决仔猪生产过程中的肠道健康问题提供参考依据,但本研究也存在一定局限性:①所纳入的英文文献数量较少;②各研究试验饲养环境及饲料情况有差异;③所选择益生菌的规格可能不一致;④缺少既定的质量评价标准,无法对文献质量进行科学评价;⑤各研究间的品种和断奶策略不同,可能造成断奶体重存在明显差异。这些因素均有可能对Meta分析结果造成一定影响,因此,今后还需开展多中心大样本且周期足够长的随机对照试验作进一步验证。

4 结论

益生菌通过显著提高十二指肠、空肠和回肠的绒毛高度及降低十二指肠隐窝深度,以改善断奶仔猪小肠的形态结构,其中,乳杆菌属组和肠球菌属组对绒毛高度的影响较显著,复合益生菌对十二指肠隐窝深度的影响显著。即益生菌在保护小肠肠道健康方面具有重要潜力,但需要注意同属不同菌种间的差异。

参考文献:

贡筱,郭俊刚,吴学壮,刘志,高秀华,杨福合,邢秀梅. 2014.饲粮中添加枯草芽孢杆菌和粪肠球菌对育成期蓝狐生长性能、营养物质消化率及氮代谢的影响[J]. 动物营养学报,26(4):1004-1010. [Gong X,Guo J G,Wu X Z,Liu Z,Gao X H,Yang F H,Xing X M. 2014. Effects of Bacillus subtilis and Enterococcus faecium supplementations on growth performance,nutrient digestibility and nitrogen metabolism of growing blue foxes[J]. Chinese Journal of Animal Nutrition,26(4):1004-1010.]

洪伟彬. 2016. 乳杆菌对断奶仔猪生产性能和肠道健康的影响[D]. 广州:华南农业大学. [Hong W B. 2016. Effects of Lactobacillus on growth performance and intestinal health of weaned piglets[D]. Guangzhou:South China Agricultural University.]

李顺. 2007. 活性酵母的筛选及其在断奶仔猪日粮中的应用研究[D]. 长沙:湖南农业大学. [Li S. 2007. Isolation of activity yeast and its application in weaned piglets dietary[D]. Changsha:Hunan Agricultural University.]

李雪莉. 2017. 植物乳杆菌制剂对断奶仔猪生长性能和肠道微生态的影响及猪源乳酸菌的分离与鉴定[D]. 南京:南京农业大学. [Li X L. 2017. Responsesof growth performance,intestinal microecology of weaning piglets to Lactobacillus plantarum and isolation,identification of lactic acid bacteria in swine[D]. Nanjing:Nanjing Agricultural University.]

牛志伟,范华龙,吕小丽,韦海向,韦慕兰,蒙兰丽,邓小红,黄钧. 2017. 4种中药对嗜水气单胞菌抑菌效果的Meta分析[J]. 南方农业学报,48(1):144-150. [Niu Z W,Fan H L,Lü X L,Wei H X,Wei M L,Meng L L,Deng X H,Huang J. 2017. Meta analysis on antibacterial effects of four kinds of traditional Chinese medicines on Aeromonas hydrophila[J]. Journal of Southern Agriculture,48(1):144-150.]

史自涛. 2015. 粪肠球菌对断奶仔猪的营养生理效应研究[D]. 重庆:西南大学. [Shi Z T. 2015. Nutrition and Phy-siological of Enterococcus faecalis on weaned piglets[D]. Chongqing:Southwest University.]

苏琴. 2015. 复合益生菌培养物对断奶仔猪生长性能、肠道生理及排泄物氨逸失的影响[D]. 杭州:浙江大学. [Su Q. 2015. Effects of complex-probiotic cultures on growth performance,intestinal physiology and ammonia emission in feces of weanling piglets[D]. Hangzhou:Zhejiang University.]

王斌星,王蜀金,郭春华,何欢,高彦华,柏雪,杨加豹,周琳. 2016. 酿酒酵母发酵液对断奶仔猪生长性能、小肠发育及小肠黏膜免疫功能的影响[J]. 动物营养学报,28(12):4014-4022. [Wang B X,Wang S J,Guo C H,He H,Gao Y H,Bai X,Yang J B,Zhou L. 2016. Effects of Saccharomyces cerevisiae fermentation broth on growth performance,small intestine development and immune function of small intestinal mucosa of weaned piglets[J]. Chinese Journal of Animal Nutrition,28(12):4014-4022.]

王蜀金,王斌星,郭春华,柏雪,彭忠利,张正帆,周琳. 2016. 分泌表达pEGF的重组酿酒酵母在断奶仔猪上的应用研究[J]. 畜牧兽医学报,47(5):944-954. [Wang S J,Wang B X,Guo C H,Bai X,Peng Z L,Zhang Z F,Zhou L. 2016. Application research of recombinant EGF-expressed Saccharomyces cerevisiae in early-weaned piglets[J]. Acta Veterinaria et Zootechnica Sinica,47(5):944-954.]

王永. 2013. 屎腸球菌对断奶仔猪促生长机理及应用效果的研究[D]. 泰安:山东农业大学. [Wang Y. 2013. Effects of Enterococcus faecium on growth-promoting mechanism and application effectiveness in weaning piglets[D]. Tai?an:Shandong Agricultural University.]

魏清甜. 2014. 粪肠球菌替代饲用抗生素对保育仔猪生产、免疫、肠道发育及肠道微生物的影响[D]. 南京:南京农业大学. [Wei Q T. 2014. Effects of Enterococcus faecalis replacing of dietary antibiotics on performance,immunity,intestinal development and intestinal microflora of nursery pigs[D]. Nanjing:Nanjing Agricultural University.]

杨健,严作廷,王东升,张世栋,杨志强,董书伟. 2016. 中药治疗奶牛乳房炎的系统评价与Meta分析[J]. 南方农业学报,47(4):656-663. [Yang J,Yan Z T,Wang D S,Zhang S D,Yang Z Q,Dong S W. 2016. Systematic evaluation and meta-analysis on efficacy of Chinese herbal medicine on cow mastitis[J]. Journal of Southern Agriculture,47(4):656-663.]

周盟,张乃锋,董晓丽,纪守坤,张立霞,崔祥,樓灿,刁其玉. 2013. 益生菌对断奶仔猪生长及消化性能的影响[J]. 饲料工业,34(2):18-21. [Zhou M,Zhang N F,Dong X L,Ji S K,Zhang L X,Cui X,Lou C,Diao Q Y. 2013. Effe-cts of probiotics on growth and digestive performance of weaned piglets[J]. Feed Industry,34(2):18-21.]

Bajagai Y S,Klieve A V,Dart P J,Bryden W L. 2016. Probio-tics in animal nutrition:Production,impact and regulation[R]. Food and Agriculture Organization of the United states.

Bontampo V,Di Giancamillo A,Savoini G,Dell?Orto V,Domeneghini C. 2006. Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets[J]. Animal Feed Science and Technology,129(3-4):224-236.

Cao S T,Wang L,Jiao L F,Lin F H,Xiao K,Hu C H. 2016. Effects of diosmectite-Lactobacillus acidophilus on growth performance,intestine microbiota,mucosal architecture of weaned pigs[J]. Animal Feed Science and Technology,220:180-186.

Eswara M S,Kavitha B T V V,Srikanth J G,Velmani G. 2010. Probiotics as potential therapies in human gastrointestinal health[J]. International Journal of Advances Pharmaceutical Sciences,1(2):96-110.

Fouhse J M,Zijlstra R T,Willing B P. 2016. The role of gut microbiota in the health and disease of pigs[J]. Animal Frontiers,6(3):30-36.

Galeano J A C,Lopez-Herrera A,Suescún J P. 2015. The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets[J]. Revista Fa-cultad Nacional de Agronomia Medellín,69(1):7803-7811.

Garcia G R,Dogi C A,Poloni V L,Fochesato A S,de Leblanc A D M,Cossalter A M,Payros D,Oswald I P,Cavaglieri L R. 2019. Beneficial effects of Saccharomyces cerevisiae RC016 in weaned piglets:In vivo and ex vivo analysis[J]. Beneficial Microbes,10(1):33-42.

Gresse R,Chaucheyras-Durand F,Fleury M A,van De Wiele T,Forano E,Bianquet-Diot S. 2017. Gut microbiota dysbiosis in postweaning piglets:Understanding the keys to health[J]. Trends in Microbiology,25(10):851-873.

Hanczakowska E,Malgorzata ?,Malgorzata N W,Krzysztof O. 2017. Effect of glutamine and/or probiotic(Enterococcus faecium) feed supplementation on piglet performance,intestines structure,and antibacterial activity[J]. Czech Journal of Animal Science,62(8):313-322.

Heo J M,Opapeju F O,Pluske J R,Kim J C,Hampson D J,Nyachoti C M. 2013. Gastrointestinal health and function in weaned pigs:A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicro-bials[J]. Journal of Animal Physiology and Animal Nutriyion,97(2):207-237.

Herias M V,Hessle C,Telemo E,Midtveedt T,Hanson L A,Wold A E. 1999. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats[J]. Clinical & Experimental Immunology,116(2):283-290.

Hou C L,Zeng X F,Yang F J,Liu H,Qiao S Y. 2016. Study and use of the probiotic Lactobacillus reuteri in pigs:A review[J]. Journal of Animal Science and Biotechnology,6(1):14. doi:10.1186/s40104-015-0014-3.

Jeonga Y D,Kob H S,Hosseindoustb A,Choi Y H,Chae B J,Yu D J,Cho E S,Cho K H,Shim S M,Ra C S,Choi J W,Jang A,Kim Y I,Kim J S. 2019. Lactobacillus-based fermentation product and lactose level in the feed for weanling pigs:Effects on intestinal morphology,micro-biota,gas emission,and targeted intestinal coliforms[J]. Livestock Science,227:90-96.

Le B M,Davies H E,Glynn C,Thompson C,Madden M,Wiseman J,Dodd C E R,Hurdidge L,Payne G,Treut Y L,Craigon J,T?temeyer S. 2010. Influence of probiotics on gut health in the weaned pig[J]. Livestock Sciece,133(1):179-181.

Lee C Y,Lim J W,Ko Y H,Kang S Y,Park M J,Ko T G,Lee J H,Hyun Y,Jeong K S,Jang I S. 2011. Intestinal growth and development of weanling pigs in response to dietary supplementation of antibiotics,phytogenic pro-ducts and brewer?s yeast plus Bacillus spores[J]. Journal of Animal Science and Technology,53(3):227-235.

Li H Z,Ran T,He Z X,Yan Q G,Tang S X,Tan Z L. 2016. Postnatal developmental changes of the small intestinal villus height,crypt depth and hexose transporter mRNA expression insupplemental feeding and grazing goats[J]. Small Ruminant Research,141:106-112.

Liu X T,Wang Y,Wang H L,Lu W Q. 2014. Effect of a li-quid culture of Enterococcus faecalis CGMCC1.101 cultivated by a high density process on the performance of weaned piglets[J]. Livestock Science,170:100-107.

Moeser A J,Klok C V,Ryan K A,Wooten J G,Little D,Cook V L,Blikslager A T. 2007. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig[J]. American Journal Physiology. Gastrointestinal and Liver Physiology,292(1):G173-G181.

Pié S,Lallès J P,Blazy F,Laffitte J,Sève B,Oswald I P. 2004. Weaning is associated with an upregulation of expression if inflammatory cytokines in the intestine of piglets[J]. The Journal Nutriyion,134(3):641-647.

Pohl C S,Medland J E,Mackey E,Edwards L L,Baqley K D,Dewilde M P,William K J,Moeser A J. 2017. Early weaning stress induces chronic functional diarrhea,intestinal barrier defects,and increased mast cell activity in a porcine model of early life adversity[J]. Neurogastroenterology and Motility,29(11):10.1111/nmo.13118. doi:10.1111/nmo.13118.

Scharek-Tedin L,Kreuzer-Redmer S,Twardziok S O,Siepert B,Kiopfleisch R,Tedin K,Zentek J,Pieper R. 2015. Probiotic treatment decreases the number of CD14-expres-sing cells in porcine milk which correlates with several intestinal immune parameters in the piglets[J]. Frontiers in Immunology,6:108. doi:10.3389/fimmu.2015.00108.

Sezen A G. 2013. Effects of prebiotics,probiotics and synbio-tics upon human and animal health[J]. Atatürk ?niversitesi Veteriner Bilimmleri Dergisi,8:248-258.

Shen Y B,Piao X S,Kim S W,Wang L,Liu P,Yoon I,Zhen Y G. 2009. Effects of yeast culture supplementation on growth performance,intestinal health,and immune response of nursery pigs[J]. Journal of Animal Science,87(8):2614-2624.

Spreeuwenberg M A,Verdonk J M,Gaskins H R,Verstegen M W. 2001. Small intestine epithelial barrier function is compromised in pigs with low feed intake atweaning[J]. The Journal of Nutrition,131(5):1520-1527.

Suo C,Yin Y S,Wang X N,Lou X Y,Song D F,Wang X,Gu Q. 2012. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality[J]. BMC Veterinary Research,8:89. doi:10.1186/1746-6148-8-89.

Tang W J,Qian Y,Yu B,Zhang T,Gao J,He J,Huang Z Q,Zheng P,Mao X B,Luo J Q,Yu J,Chen D W. 2019. Effects of Bacillus subtilis DSM32315 supplementation and dietary crude protein level on performance,gut barrier function and microbiota profile in weaned piglets1[J]. Journal of Animal Science,97(5):2125-2138.

van der Peet-Schwering C M C,Jansman A J M,Smidt H,Yoon I. 2007. Effects of yeast culture on performance,gut integrity,and blood cell composition of weanling pigs[J]. Journal of Animal Science,85(11):3099-3109.

Wang T W,Teng K L,Liu Y Y,Shi W X,Zhang J,Dong E Q,Zhang X,Tao Y,Zhong J. 2019. Lactobacillus plantarum PFM105 promotes intestinal development through modulation of gut microbiota in weaning piglet[J]. Frontiers in Microbiology,10:90.doi:10.3389/fmicb.2019.000 90.

Xie Y H,Zhang C Y,Wang L X,Shang Q H,Zhang G G,Yang W R. 2018. Effects of dietary supplementation of Enterococcus faecium on growth performance,intestinal morphology,and selected microbial populations of piglets[J]. Livestock Science,210:111-117.

Xu Y G,Yu H,Zhang L,Liu M,Qiao X Y,Cui W,Jiang Y P,Wang L,Li Y J,Tang L J. 2016. Probiotic properties of genetically engineered Lactobacillus plantarum produ-cing porcine lactoferrin used as feed additive for piglets[J]. Process Biochemistry,51(6):719-724.

Yang H S,Wu F,Long L N,Li T J,Xiong X,Liao P,Liu H N,Yin Y L. 2016. Effects of yeast products on the intestinal morphology,barrier function,cytokine expression,and antioxidant system of weaned piglets[J]. Journal of Zhejiang University. Science B,17(10):752-762.

Yi H B,Wang L,Xiong Y X,Wen X L,Wang Z L,Yang X F,Gao K G,Jiang Z Y. 2018. Effects of Lactobacillus reu-teri LR1 on the growth performance,intestinal morpho-logy and intestinal barrier function in weaned pigs[J]. Journal of Animal Science,96(6):2342-2351.

(責任编辑 兰宗宝)

猜你喜欢
Meta分析益生菌
饭后补充益生菌效果更佳
益生菌真相
如何选择适合你的益生菌?
益生菌的是与非
益生菌真的是“万能药”吗?
结直肠进展腺瘤发生率的Meta分析
血小板与冷沉淀联合输注在大出血临床治疗中应用的Meta分析
细辛脑注射液治疗慢性阻塞性肺疾病急性加重期疗效的Meta分析
中药熏洗治疗类风湿关节炎疗效的Meta分析
丹红注射液治疗特发性肺纤维化临床疗效及安全性的Meta分析