郭容男, 韩伟强
极性聚合物粘结剂的结构和物性对锂离子电池的影响
郭容男, 韩伟强
(浙江大学 材料科学与工程学院, 杭州 310027)
粘结剂在锂离子电池中虽用量少, 但是对锂离子电池的性能有较大影响。传统粘结剂聚偏氟乙烯与活性物质间形成的范德华力较弱, 不能满足现代锂离子电池, 特别是高比容量锂离子电池的要求。大部分电极材料表面具有极性基团, 这些基团可与极性聚合物间形成较强的作用力, 故极性聚合物粘结剂成为当前的研究热点。极性聚合物粘结剂对锂离子电池的影响与诸多因素有关。本文主要讨论了聚合物粘结剂的结构和物性对锂离子电池性能的影响, 包括聚合物的结构特征、粘结性、力学性能和导电性等因素, 进而从分子层次提出了设计下一代粘结剂的方法, 并展望了粘结剂的未来发展方向。
极性聚合物; 粘结剂; 锂离子电池; 综述
科学技术的快速发展一方面消耗了大量不可再生化石燃料, 另一方面造成了严重的环境污染, 威胁人类的健康。为了世界的可持续发展和人类的生存环境, 急需开发洁净、安全和可再生的新能源。锂离子电池(LIBs)因具有能量密度高、寿命长、倍率性能好和绿色环保等特点而备受关注。目前LIBs已广泛应用于便携式电池产品, 但是应用于动力汽车时, 其能量密度和循环性能仍需要进一步提高。对此, 开发新型高比容量活性物质或改变活性物质的形貌可提高电极的比容量和循环稳定性[1-4], 但是用量较少的粘结剂的作用也不可忽视。粘结剂的主要作用是将活性物质、导电剂和集流体粘结在一起, 保证电极的完整性。不同粘结剂对电极的初始比容量、库伦效率和电化学循环稳定性的影响有较大差异[5-8]。传统商用粘结剂聚偏氟乙烯(PVDF)由于成本高、与活性物质的粘结力差和使用有毒溶剂-甲基吡咯烷酮等缺点已不能满足开发高比容量电极和环保的要求[9-10]。而低成本且环保的羧甲基纤维素钠(CMC)尽管可以显著提高粘结性能和电极的初始库伦效率, 但是该粘结剂的柔性差, 不能承受高比容量活性物质的体积膨胀[11-12], 所以目前极性聚合物仍是LIBs的主要粘结剂。为了便于学者们更好地设计开发新型高效粘结剂, 本文论述了极性聚合物的结构、粘结性、力学性能和导电性等因素对LIBs性能的影响(图1), 并展望了未来LIBs用粘结剂的发展方向。
聚合物是由大量的结构单元按照不同的键合方式连接而成, 故不同聚合物的结构特征不同, 对LIBs电化学性能的影响也有所差异。下面将具体论述极性聚合物的结构对LIBs电化学性能的影响。
结构单元按极性分为极性和非极性结构单元。极性结构单元可与表面含极性基团的被粘物质形成较强的作用力[13]。如含羧基、羟基和异氰酸酯基团等极性基团的聚合物在一定条件下与被粘物形成化学键, 提高粘结强度和对活性物质的分散性[14-15]。大部分活性物质表面呈极性, 故极性聚合物粘结剂具有更好的粘结性能。极性基团的种类及数量对电极材料的粘结性的影响不同。如Si表面含有极性基团SiO及−OH, 以含有极性结构单元的CMC为粘结剂, 则CMC中大量−OH和−COO−极性基团可与活性物质表面的−OH或SiO形成共价键和(或)氢键(图2), 故对Si的粘结性极高, 极大提高了电极的比容量和电化学循环稳定性[16]。含有其他极性结构单元的极性聚合物对LIBs的电化学性能影响如表1所示。此外极性结构单元可提高Si颗粒的分散性[27-28]。同时含不同极性基团的聚合物也可通过极性基团间的协同作用提高粘结力。如CMC链上引入聚丙烯酸钠(NaPAA--CMC)、聚丙烯酸(PAA)或海藻酸钠(SA)中引入支链多巴胺(PAA-C或Alg-C, 图3), 均可极大提高聚合物的粘结性能和硅负极的电化学循环稳定性[29-30]。Alg-C粘结剂可使硅负极在电流密度为2100 mA/g的条件下循环400圈后, 比容量仍高于2000 mAh/g[29]。但是对于嵌锂时体积膨胀巨大的活性物质, 如果极性结构单元含量过大, 由于极性单元间作用力如氢键阻碍分子链的自由旋转, 聚合物柔性过差, 不利于承受活性物质体积膨胀产生的应力; 如果极性结构单元含量过小, 聚合物粘结性差, 抗张强度低, 不利于抑制活性物质的体积膨胀, 故需使极性聚合物中极性基团和非极性基团结构单元配比合适, 如CMC和丁苯橡胶(SBR)混合物。嵌锂过程中Si体积膨胀时, 由于CMC/SBR中SBR的分子链易于运动, 有效防止了粘结剂的破裂和活性物质的脱落, CMC则提供较强粘结力和抗张强度, 缓解Si体积膨胀, 所以CMC/SBR粘结剂制备的Si负极具有良好的电化学循环稳定性[31]。
图1 极性聚合物粘结剂对LIBs性能的影响因素
表1 极性聚合物粘结剂在LIBs中的应用
图2 CMC粘结剂对Si颗粒的粘结机理[16]
图3 ALg-C和PAA-C的化学结构式[29]
聚合物链结构也影响聚合物的物性。聚合物按链结构形态分为线型结构和体型结构。线型结构聚合物如PAA、CMC和SA对活性物质的粘结性好[11,32-33]。PAA粘结剂制备的纳米Si负极在0.5的条件下循环100圈, 每圈的平均比容量损失率不到0.2%[32]。SA粘结剂制备的纳米Si负极, 在电流密度为4200 mA/g的条件下循环100圈, 比容量为1700~2000 mAh/g[33]。但是线型结构的分子链之间易于滑动, 受力后易发生永久变形, 导致活性物质团聚, 降低极片的比容量。而体型聚合物即交联聚合物分子链不易滑动, 变形后可以回复到原状, 因此交联聚合物具有更强的粘结性。此类聚合物作为电极粘结剂时, 可有效防止脱嵌锂过程中活性物质颗粒团聚, 缓解电极比容量衰减[34-36]。如以,’-亚甲基双丙烯酰胺为交联剂制备的交联聚丙酰胺粘结剂, 可极大提高Si负极的循环稳定性。在0.1的条件下循环100圈后, 可逆比容量达2843 mAh/g[23]。交联聚合物包括可逆交联和不可逆交联聚合物, 可逆交联聚合物的交联点具有可逆性。活性物质体积膨胀时破坏可逆交联点, 活性物质体积收缩时可逆交联点重新形成, 再次将活性物质包裹在聚合物交联体中, 保证电极片的完整性[37-39]。如可形成四重氢键的可逆交联聚合物UPy-PAA为Si负极的粘结剂时, 首次放电比容量高达4194 mAh/g, 循环110圈后可逆比容量仍然有2638 mAh/g[37]。Xu等[38]制备的可逆交联聚合物粘结剂PAA-P(HEA--DMA)可提高Si负极的循环稳定性。此粘结剂制备的Si负极循环220圈后比容量仍有2394 mAh/g。但是由于可逆交联点的作用力比共价键弱, 对于体积膨胀巨大的活性物质, 聚合物粘结剂中大部分交联点被破坏, 破坏了聚合物的体型结构, 造成部分活性物质在体积收缩之前脱落, 降低了电极片的比容量。不可逆交联聚合物的不可逆交联点通常为键能很高的化学键, 故不可逆交联点一旦破坏便不可再次形成。如果交联聚合物中同时存在可逆交联点和不可逆交联点, 则由于不可逆交联点的作用力高于可逆交联点, 活性物质体积膨胀产生的内应力优先使可逆交联点断裂并吸收能量, 有效防止了不可逆交联点的断裂, 可以保证聚合物的体型结构, 防止活性物质脱落, 进而确保电极片的完整性。鉴于此, 可使粘结剂中同时存在不可逆交联和可逆交联点, 两者的协同作用进一步保证了充放电过程中极片的完整性。此外, 聚合物的其他结构特征也对电极的电化学性能影响很大。如具有聚轮烷结构的粘结剂的断裂伸长率极高, 有效增加了承受活性物质体积膨胀的能力, 提高了电极的电化学性能。Choi等[8]制备的含有聚轮烷的粘结剂PR-PAA的断裂伸长率可达390%。此粘结剂可使Si负极在0.2的条件下循环150圈后, 比容量为2.43 mAh/cm2, 容量保留率为91%。
粘结性是粘结剂最重要的性能。高粘结性的粘结剂可有效提高LIBs的电化学性能。极性聚合物粘结剂的粘结性强弱不仅与聚合物分子链间作用力有关, 也与聚合物和被粘物质间相互作用力有关。上述两种作用力主要为不可逆化学键和可逆的分子间作用力如氢键和范德华力等。作用力较强的化学键和氢键等有利于提高粘结剂的粘结性, 且作用力越强, 粘结力越强。可逆作用力有利于保证极片的完整性。如CMC与Si之间形成的共价键和氢键。嵌锂过程中, 活性物质发生体积膨胀, 破坏了共价键和氢键。共价键不能再次形成, 氢键可再次形成, 具有自愈合能力(图4), 有利于保证极片的完整性, 提高极片的电化学循环性能[40]。但是具有可逆性的范德华力作用力非常弱, 造成粘结力差, 不利于提高电极的电化学稳定性, 特别是充放电过程中体积变化巨大的Si、Sn和S等活性物质。弱作用力无法缓解和抑制充放电过程中活性物质的粉化和脱落。最理想的状态是极性聚合物与活性物质间同时存在不可逆化学键和作用力较强的可逆作用力。化学键提供高粘结力, 可逆作用力吸附脱落和粉化的活性物质, 从而保证电化学循环过程中极片的完整性。
交联可进一步提高聚合物的粘结性能[41]。如Ca2+与SA制备的高度交联海藻酸钠粘结剂(图5(a))可使Si极片的剥离强度远高于PVDF制备的Si极片, 且剥离力随交联度的增加而增强(图5(b))[42], 即交联度与极性聚合物的粘结性也有关。此外, pH也会影响极性聚合物的粘结性。如pH=3的缓冲溶液中, CMC中的−COO−和Si表面的SiO−同时转化为−COOH和SiOH, 这两个基团易于形成酯键[43], 提高粘结力。其他一些极性聚合物粘结剂的粘结性能如表1所示。
极性聚合物的粘结性与极片的干燥条件和活性物质的负载量有关。由于极片干燥时, 表面张力作用使溶剂分子向极片表面运动, 造成极片表面粘结剂较多而靠近集流体部分粘结剂较少, 粘结力差。升高温度时, 分子运动速度加快, 增加了粘结剂的分布不均匀性, 造成粘结性降低[44]。活性物质的负载量增大, 会增加极片的厚度, 加剧粘结剂的分布不均匀, 也会降低粘结性[45]。
图4 嵌锂时CMC与Si之间作用力的演变模型[40]
图5 (a)高度交联SA粘结剂制备的Si极片的构建示意图, (b)不同粘结剂制备的Si负极的剥离强度[42]
故设计极性聚合物粘结剂时, 需考虑pH、交联剂和交联度等因素。在不同pH条件下极性基团的活性有所区别, 所以选择合适的pH有利于提高粘结性。交联剂不但对交联极性聚合物的粘结性能有影响, 而且从加工性能方面考虑, 不同交联剂的交联条件也有所不同, 所以选择合适的交联剂至关重要。交联剂用量对极性聚合物的交联度和粘结性能都有影响。而选择适当的交联度, 可以提高聚合物与被粘物质间的作用力。此外, 调节极性基团的种类和数量也有利于提高粘结剂的粘结性。
高比容量活性物质如Si在嵌锂过程中体积膨胀可达300%以上[46], 所以极性聚合物良好的弹性模量、抗张强度、断裂伸长率、柔性和动态力学性能等力学性能有利于抑制活性物质体积膨胀和适应活性物质体积变化。高弹性模量和抗张强度的粘结剂有利于抑制活性物质体积膨胀, 防止活性物质粉化[47];较高的断裂伸长率和良好的柔性有利于承受活性物质的体积膨胀, 防止活性物质脱落[23]。充放电循环过程中活性物质体积变化时, 优异的动态力学性能可有效防止极性聚合物破裂, 确保极片的完整性。因为聚合物分子内化学键与分子间作用力可以抵抗外力的破坏, 所以增加极性聚合物的极性基团数量、增强分子间作用力和提高分子量等均可改善聚合物的弹性模量和抗张强度[32,48-49], 更有利于抑制活性物质体积膨胀。但是过大的分子间作用力, 降低了分子链的运动能力, 极大地影响了聚合物的断裂伸长率和柔性。交联可提高聚合物的弹性模量和抗张强度, 降低聚合物的断裂伸长率。如以-羟甲基丙烯酰胺(PNA)为交联剂制备的粘结剂(PNA-NaPAA--CMC, 图6(a))的抗张强度远高于其他线型聚合物, 但是断裂伸长率非常小(图6(b))。该粘结剂可提高Si电极的电化学循环稳定性能, 循环250圈后比容量仍然在2000 mAh/g以上(图6(c))[47]。此外, 增大分子量和提高结晶度均可提高聚合物的弹性模量和抗张强度[50]。故可通过调节聚合物极性基团的种类和数量、分子间作用力、交联度、结晶度等来提高聚合物机械性能。
传统负极活性物质石墨具有良好的导电性, 但是高比容量活性物质(Si、Sn和S等)的导电性差, 需添加导电剂提高电极的导电性。尽管通常所用的炭黑等无机材料导电剂可提高电极的导电性, 但是其在充放电过程中易团聚或脱落, 破坏电极的导电通道, 使电极容量下降[26,51-52]。此外由于上述电极的Li+传输能力差, 不利于LIBs的倍率性能。使用有利于电子传输和(或)离子传输的导电聚合物粘结剂可减少无机导电剂的添加量, 提高LIBs的倍率性能[20,53]。
图6 (a)交联粘结剂PNA-NaPAA-g-CMC的示意图, (b)电解质浸泡后的不同粘结剂的拉伸曲线和(c)不同粘结剂制备的Si电极的循环曲线[47]
导电聚合物分为复合型和结构型导电聚合物, 这里主要论述结构型导电极性聚合物。结构型导电极性聚合物又分为电子传输型(聚吡咯[54]、聚苯胺[55]和酞菁铜(II)四磺酸盐交联的聚吡咯[56])和离子传输型导电聚合物(如聚丙烯酸锂[57]、瓜尔豆胶[58])。同时具有良好的电子和离子传输性的导电极性聚合物可同时提高电极的电子和离子传输速率, 故结合两种聚合物或将有利于电子和离子传输的基团同时引入聚合物链中, 如聚氧化乙烯、聚乙烯亚胺和聚(3,4-亚乙二氧基噻吩)–聚(苯乙烯磺酸)的复合物(c-PEO-PEDOT:PSS/PEI)的离子传输速率和电子传输速率都远高于乙炔黑掺杂CMC, 分别是其14倍和90倍。c-PEO-PEDOT:PSS/PEI为导电粘结剂制备的Si电极在8.0 A/g的高电流密度下比容量可达1500 mAh/g[22]。
粘结剂的其他性能如吸液率、化学和电化学稳定性以及是否易于形成稳定的固体电解质界面(SEI)膜等均影响LIBs的电化学性能。
粘结剂吸液率会影响Li+的传输速率和粘结性能。高吸液率有利于Li+传输[21], 但由于增加了极性聚合物与被粘物质界面上电解液的量, 降低了粘结剂的粘结性能[59-60], 故极性聚合物需具有适量的吸液率。但是由极性聚合物中的微孔造成的高吸液率则不影响粘结剂的粘结性能。所以为了使粘结剂同时具有优异的吸液率和粘结性, 极性聚合物中引入可包裹电解液的特殊结构, 可提高Li+的传输速率, 减少电解液与活性物质的直接接触。如以PAA为交联剂制备的交联型阿拉伯树胶(GA-PAA)[61]的吸液率可达25wt%, 高于PAA的Li+传输速率。本课题组由PAA和乙烯–醋酸乙烯酯共聚物(EVA)制备的PAA/EVA粘结剂可将电解液包裹在EVA颗粒中(图7)。PAA/EVA电极片的吸液率高达59%, 而PAA电极片的吸液率仅为15%。此粘结剂的高吸液率对粘结性能影响很小[62]。LIBs用极性聚合物粘结剂还需具有化学和电化学稳定性。极性聚合物粘结剂的化学稳定性是指其不与活性物质、导电剂以及电解质发生反应的能力, 与其分子结构和化学环境有关。PVDF是一种非常稳定的聚合物, 但是在由碳酸乙烯酯、碳酸二乙酯和碳酸二甲酯组成的有机溶剂中易发生溶胀[63]。极性聚合物粘结剂的电化学稳定性是指粘结剂在LIBs的工作电压下不发生氧化还原反应的能力。聚合物粘结剂的电化学稳定性与粘结剂的活化能有关, 其电化学反应符合能斯特方程[64]。
图7 EVA颗粒在电解液中浸泡的结构示意图[62]
SEI膜可防止电解质和Li+的进一步消耗, 也可阻止溶剂分子共嵌入, 保护电极材料。但是SEI膜的形成同时消耗了Li+和电解液, 电极的不可逆容量增加, 因此薄且稳定的SEI膜对提高LIBs可逆容量的循环稳定性和倍率等性能至关重要。粘结剂对形成稳定的SEI膜有重要影响。极性聚合物因含有−COOH、−OH和−NH2等极性基团, 可与表面含极性基团的活性物质形成化学键或氢键, 减少电解质与活性物质的接触, 进而减小SEI膜的厚度[18,65]。
传统粘结剂PVDF对环境污染严重, 不利于操作人员的健康, 故粘结剂的环保和安全性也是需考虑的重要因素。目前已有很多学者致力于开发环保、安全的水性粘结剂, 如壳聚糖及其衍生物[66-67]、聚乙烯亚胺及其衍生物[5,68-69]、聚丙烯酸及其衍生物[70-72]等, 但是还需要进一步提高LIBs的比容量、首次库伦效率和循环稳定性等。
极性聚合物作为LIBs的主要粘结剂, 对LIBs性能的影响主要与聚合物的结构和物性有关, 如聚合物的结构特征、粘结性、力学性能、导电性等。结构特征主要与聚合物的化学结构有关, 分子链中引入适量可生成可逆或(和)不可逆交联点的特定极性基团, 形成具有三维网络结构的极性聚合物, 可提高极性聚合物的弹性模量、抗张强度、断裂伸长率和柔性, 保证充放电过程中极片的完整性。分子链中引入具有良好电子和离子导电性的基团, 可提高电极的电化学循环性能和倍率性能。此外, 与活性物质表面形成化学键或其他分子间作用力(如氢键)的极性聚合物有利于形成薄且稳定的SEI膜。目前已探索研究出了一些具有优异性能的粘结剂, 但还不能同时满足上述所有要求, 特别是对于高比容量的活性物质, 还存在制备复杂、不能完全抑制或承受活性物质的体积膨胀等缺点, 造成电极的循环稳定性和倍率性能差。未来需要设计合成或发现同时具有优异粘结性、力学性能和导电性的新型粘结剂, 进一步提高电极的电化学性能。对于极性聚合物粘结剂的设计, 需通过调节极性单元的种类和数量、聚合物分子量、交联剂种类和用量、pH、有利于电子和离子导电性的结构等提高粘结剂的性能。此外, 目前适用于高低温环境的锂离子电池粘结剂较少, 需进一步研究开发。
[1] HE W, TIAN H, ZHANG S,. Scalable synthesis of Si/C anode enhanced by FeSinanoparticles from low-cost ferrosilicon for lithium-ion batteries., 2017, 353: 270–276.
[2] CHEN Y, LIU L, XIONG J,. Porous Si nanowires from heap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries., 2015, 25(43): 6701–6709.
[3] PARK M H, KIM M G, JOO J,. Silicon nanotube battery anodes., 2009, 9(11): 3844–3847.
[4] LIU Y, TAI Z, ZHOU T,. An all-integrated anodeinterlinked chemical bonding between double-shelled-yolk- structured silicon and binder for lithium-ion batteries., 2017, 29(44): 1703028–1–11.
[5] AKHTAR N, SHAO H, AI F,. Gelatin-polyethylenimine composite as a functional binder for highly stable lithium-sulfur batteries., 2018, 282: 758–766.
[6] HE J, ZHANG L. Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode., 2018, 763: 228–240.
[7] LING M, ZHANG L, ZHENG T,. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery., 2017, 38: 82–90.
[8] CHOI S, KWON T W, COSKUN A,. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries., 2017, 357(6348): 279–283.
[9] ZHAO X Y, YIM C H, DU N Y,. Crosslinked chitosan networks as binders for silicon/graphite composite electrodes in Li-ion batteries., 2018, 165(5): A1110–A1121.
[10] HU S, CAI Z, HUANG T,. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries., 2019, 11(4): 4311–4317.
[11] DROFENIK J, GABERSCEK M, DOMINKO R,. Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study., 2003, 48(7): 883–889.
[12] ZHANG R, YANG X, ZHANG D,Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4anode electrodes in lithium ion batteries., 2015, 285: 227–234.
[13] MIN K, RAMMOHAN A R, LEE S H,. Grafting functional groups in polymeric binder toward enhancing structural integrity of LiSiO2anode during electrochemical cycling., 2018, 122(30): 17190–17198.
[14] YOO J K, JEON J, KANG K,. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries., 2017, 13(2): 136–141.
[15] JIAO Y, CHEN W, LEI T,. A Novel polar copolymer design as a multi-functional binder for strong affinity of polysulfides in lithium-sulfur batteries., 2017, 12: 195–1–8.
[16] HOCHGATTERER N S, SCHWEIGER M R, KOLLER S,. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability., 2008, 11(5): A76–A80.
[17] LUO C, DU L, WU W,. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries., 2018, 6(10): 12621–12629.
[18] QIU L W, SHEN Y D, FAN H B,. Carboxymethyl fenugreek gum: rheological characterization and as a novel binder for silicon anode of lithium-ion batteries., 2018, 115: 672–679.
[19] YI H, LAN T, YANG Y,. Aqueous-processable polymer binder with strong mechanical and polysulfide-trapping properties for high performance of lithium–sulfur batteries., 2018, 6 (38): 18660–18668.
[20] ZHAO Y, YANG L Y, LIU D,. A conductive binder for high-performance Sn electrodes in lithium-ion batteries., 2018, 10(2): 1672–1677.
[21] LIU D, ZHAO Y, TAN R,. Novel conductive binder for high-performance silicon anodes in lithium ion batteries., 2017, 36: 206–212.
[22] ZENG W, WANG L, PENG X,. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries., 2018, 8(11): 1702314–1–8.
[23] ZHU X, ZHANG F, ZHANG L,. A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage., 2018, 28(11): 1705015–1–12.
[24] YAN L, GAO X, WAHID-PEDRO F,. A novel epoxy resin-based cathode binder for low cost, long cycling life, and high-energy lithium–sulfur batteries., 2018, 6(29): 14315–14323.
[25] ROHAN R, KUO T C, CHIOU C Y,. Low-cost and sustainable corn starch as a high-performance aqueous binder in silicon anodescross-linking., 2018, 396: 459–466.
[26] MUNAOKA T, YAN X Z, LOPEZ J,. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries., 2018, 8(14): 1703138–1–11.
[27] LUO L, XU Y, ZHANG H,. Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-si anodes., 2016, 8(12): 8154–8161.
[28] PARK H K, KONG B S, OH E S. Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries., 2011, 13(10): 1051–1053.
[29] RYOU M H, KIM J, LEE I,. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries., 2013, 25(11): 1571–1576.
[30] WEI L, CHEN C, HOU Z,. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries., 2016, 6: 19583–1–8.
[31] BUQA H, HOLZAPFEL M, KRUMEICH F,. Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries., 2006, 161(1): 617–622.
[32] MAGASINSKI A, ZDYRKO B, KOVALENKO I,. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid., 2010, 2(11): 3004–3010.
[33] KOVALENKO I, ZDYRKO B, MAGASINSKI A,. A major constituent of brown algae for use in high-capacity Li-ion batteries., 2011, 334(6052): 75–79.
[34] HAN Z J, YABUUCHI N, HASHIMOTO S,. Cross-linked poly(acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries., 2013, 2(2): A17–A20.
[35] WANG L, LIU T, PENG X,. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries., 2017, 28(3): 1704858–1–8.
[36] YANG J, ZHANG L, ZHANG T. Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries., 2018, 87: 22–26.
[37] ZHANG G, YANG Y, CHEN Y,. A wuadruple-hydrogen- bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries., 2018, 14(29): 1801189–1–10.
[38] XU Z, YANG J, ZHANG T,. Silicon microparticle anodes with self-healing multiple network binder., 2018, 2(5): 818–819.
[39] KWON T W, JEONG Y K, DENIZ E,. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries., 2015, 9(11): 11317– 11324.
[40] BRIDEL J S, AZAIS T, MORCRETTE M,.observation and long-term reactivity of Si/C/CMC composites electrodes for Li-ion batteries., 2011, 158(6): A750–A759.
[41] WEI Y J, WANG Z J, YE H,. A stable cross-linked binder network for SnO2anode with enhanced sodium-ion storage performance., 2017, 2(35): 11365–11369.
[42] ZHANG L, ZHANG L, CHAI L,. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries., 2014, 2(44): 19036–19045.
[43] MAZOUZI D, LESTRIEZ B, ROUE L,. Silicon composite electrode with high capacity and long cycle life., 2009, 12(11): A215–A218.
[44] BAUNACH M, JAISER S, SCHMELZLE S,. Delamination behavior of lithium-ion battery anodes: influence of drying temperature during electrode processing., 2016, 34(4): 462–473.
[45] KARKAR Z, MAZOUZI D, HERNANDEZ C R,. Threshold-like dependence of silicon-based electrode performance on active mass loading and nature of carbon conductive additive., 2016, 215: 276–288.
[46] HE W, TIAN H, XIN F,. Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries., 2015, 3(35): 17956– 17962.
[47] WEI L M, HOU Z Y. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries., 2017, 5(42): 22156–22162.
[48] NUNES R W, MARTIN J R, JOHNSON J F. Influence of molecular- weight and molecular-weight distribution on mechanical-properties., 1982, 22(4): 205–228.
[49] WU Q, HENRIKSSON M, LIU X,. A high strength nanocomposite based on microcrystalline cellulose and polyurethane., 2007, 8(12): 3687–3692.
[50] WANG Y, GOZEN A, CHEN L,. Gum-like nanocomposites as conformable, conductive, and adhesive electrode matrix for energy storage devices., 2017, 7(6): 1601767–1–11.
[51] YUCA N, CETINTASOGLU M E, DOGDU M F,. Highly efficient poly(fluorene phenylene) copolymer as a new class of binder for high-capacity silicon anode in lithium-ion batteries., 2018, 42(3): 1148–1157.
[52] HUANG S, REN J G, LIU R,. Low addition amount of self-healing ionomer binder for Si/graphite electrodes with enhanced cycling., 2018, 42(9): 6742–6749.
[53] WANG Z Q, TIAN S K, LI S D,. Lithium sulfonate-grafted poly(vinylidenefluoride-hexafluoro propylene) ionomer as binder for lithium-ion batteries., 2018, 8(36): 20025–20031.
[54] MILROY C, MANTHIRAM A. An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium-sulfur batteries., 2016, 28(44): 9744–9751.
[55] TAMURA T, AOKI Y, OHSAWA T,. Polyaniline as a functional binder for LiFePO4cathodes in lithium batteries., 2011, 40(8): 828–830.
[56] SHI Y, ZHANG J, BRUCK A M,. A tunable 3D nanostructured conductive gel framework electrode for high- performance lithium ion batteries., 2017, 29(22): 1603922–1–8.
[57] PIECZONKA N P W, BORGEL V, ZIV B,. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries., 2015, 5(23): 1501008–1–10.
[58] LIU J, ZHANG Q, ZHANG T,. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries., 2015, 25(23): 3599–3605.
[59] GENDENSUREN B, OH E S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery., 2018, 384: 379–386.
[60] PAN J, XU G, DING B,. PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries., 2016, 6(47): 40650–40655.
[61] LING M, ZHAO H, XIAO X,. Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries., 2015, 3(5): 2036–2042.
[62] GUO R, ZHANG S, YING H,. A new, effective and low cost dual-functional binder for porous silicon anodes in lithium-ion batteries., 2019, 11(15): 14051– 14058.
[63] CHEN Z, CHRISTENSEN L, DAHN J R. Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries., 2003, 150(8): A1073– A1078.
[64] LAIDLER K J. The development of the Arrhenius equation., 1984, 61(6): 494–498.
[65] KARKAR Z, GUYOMARD D, ROUE L,. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes., 2017, 258: 453–466.
[66] LEE S H, LEE J H, NAM D H,Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery., 2018, 10(19): 16449–16457.
[67] GAO H, ZHOU W, JANG J H,. Cross-linked chitosan as a polymer network binder for an antimony anode in sodium-ion batteries., 2016, 6(6): 1502130–1–7.
[68] WANG H, LING M, BAI Y,. Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries., 2018, 6(16): 6959–6966.
[69] LIAO J, LIU Z, LIU X,. Water-soluble linear poly (ethylenimine) as a superior bifunctional binder for lithium-sulfur batteries of improved cell performance., 2018, 122(45): 25917–25929.
[70] SONG J, ZHOU M, YI R,. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries., 2014, 24(37): 5904–5910.
[71] FEI J, SUN Q Q, CUI Y L. Sodium carboxyl methyl cellulose and polyacrylic acid binder with enhanced electrochemical properties for ZnMoO4·0.8H2O anode in lithium ion batteries., 2017, 804: 158–164.
[72] LEE S Y, CHOI Y, HONG K S,. Influence of EDTA in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode., 2018, 447: 442–451.
Effects of Structure and Properties of Polar Polymeric Binders on Lithium-ion Batteries
GUO Rong-Nan, HAN Wei-Qiang
(School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China)
Binders have a great impact on the performance of lithium-ion batteries, although small doses of binder is applied. The traditional binder poly (vinylidene fluoride) cannot meet the requirements of modern lithium-ion batteries, especially those with high specific capacity, because it interacts with electrode materials through weak Van de Waals force. The surfaces of most electrode materials have polar groups which can strongly interact with polar polymeric binders. Therefore, the polar polymeric binders have been paid much attention, recently. Many factors of polar polymeric binders influence the properties of lithium-ion batteries. This review mainly focuses on the impacts of structure properties of polar polymeric binders on lithium-ion batteries, including structural feature, adhesiveness, mechanical properties, conductivity, and other properties Besides, we propose the strategies of designing next-generation binders for lithium-ion batteries from molecular level, and claim the future direction and prospects of the binders.
polar polymer; binder; lithium-ion battery; review
TQ174
A
1000-324X(2019)10-1021-09
10.15541/jim20190043
2019-01-24;
2019-05-07
郭容男(1987–), 女, 博士研究生. E-mail: 11626022@zju.edu.cn
韩伟强, 教授. E-mail: hanwq@zju.edu.cn