史兰香,胡永青,陈 东,张宝华
(1.石家庄学院 化工学院,河北 石家庄 050035;2.河北省农业利用外资办公室,河北 石家庄 050011;3.河北高盛药业股份有限公司,河北 新乐 063000)
氟苯尼考又名氟甲砜霉素,其化学名为D(+)-苏-1-对甲砜基苯基-2-二氯乙酰氨基-3-氟丙醇,化学结构如图1所示.氟苯尼考是一种由美国先灵-葆雅公司研制的新的兽医专用氯霉素类的广谱抗菌药,对猪胸膜肺炎放线杆菌、支气管败血波士杆菌、多杀性巴氏杆菌、副猪嗜血杆菌、链球菌、大肠杆菌、沙门氏菌等革兰阳性菌和阴性菌均有强大的杀灭作用.氟苯尼考的结构中,以F原子取代了氯霉素和甲砜霉素结构中的丙烷链上的羟基,消除了氯霉素和甲砜霉素易产生耐药性的缺陷,以甲砜基团取代了氯霉素和甲砜霉素结构中的硝基,克服了氯霉素和甲砜霉素引起的致再生障碍性贫血的缺点,因此,氟苯尼考抗菌活性优于氯霉素和甲砜霉素,是防治动物感染性疾病用量最大、效果最好的一线抗菌药之一.但氟苯尼考水溶性极差,在动物体内的吸收及生物利用度很低.临床通常采用混入饲料中给药,由于畜禽发病时食欲废绝,药效发挥不充分,导致氟苯尼考用药成本高,且容易造成药物残留.为了克服氟苯尼考水溶性差的缺点,国内外进行了大量增溶研究.笔者就近年来国内外关于氟苯尼考的增溶方法研究进展进行了评述,并对其在增溶领域的发展进行了展望.
物理增溶法主要是使用溶剂、微晶共晶、纳米胶束、分子包合、形成固体分散体等方法来提高氟苯尼考的溶解度、溶出速率和生物利用度.
图1 氟苯尼考的结构
为了制备氟苯尼考溶液剂和注射剂,常采用二甲基甲酰胺、二甲基乙酰胺和二甲基亚砜等有机溶剂溶解氟苯尼考.高木真等[1]采用无毒的丙二醇、丙三醇与水混合溶剂溶解氟苯尼考,配方如下:氟苯尼考5~30%(W/V),丙二醇 30%~50%(V/V),柠檬酸钠 1.8%~2.2%(W/V),吐温或/和司盘 0.01%~0.5%(W/V),纤维素衍生物0.5%~1.5%(W/V),柠檬酸适量.孙胜锋[2]采用丙二醇、二甲基乙酰胺、苯甲醇、α-吡咯烷酮混合溶剂溶解氟苯尼考制备了氟苯尼考注射液.杨宏伟等[3]也用二甲基乙酰胺与聚乙二醇混合溶液溶解氟苯尼考制备了氟苯尼考注射液.这类溶液剂或注射剂制备方法都使用了大量有机溶剂,存在潜在的毒性,注射时常引起局部刺激及疼痛反应,虽然改进后全部或部分采用了无毒的醇类为溶剂,使动物的适口性得到改善,但配方成分复杂,需加热溶解,耗能较高,利润较低.
郝红勋等[4]于35~45℃下,将一定摩尔比例的氟苯尼考与柠檬酸在乙醇、乙腈、异丙醇中配制成饱和溶液,通过氢键作用,使氟苯尼考与柠檬酸形成共晶体来提高氟苯尼考的溶解度和溶出度,使氟苯尼考的摩尔溶解度提高了3.3倍.其优点是不需要破坏和产生共价键就能对氟苯尼考进行修饰,来达到提高氟苯尼考的溶解度的目的,但是,本方法溶解度提高有限.曹航等[5]以水为反溶剂,以丙酮为改良溶剂,在4℃下用羟丙甲纤维素(HPMC)修饰氟苯尼考,制备了氟苯尼考微晶体,与氟苯尼考原药溶解度(2.12 g/L)相比,氟苯尼考微晶体的溶解度提高到3.13 g/L,但溶解度提高仍然不理想.
宋益民等[6]以棕榈酸、油酸、共轭亚油酸、顺-15-二十四碳烯酸、脂蜡酸、亚油酸等长链羧酸与各种乙酰化的壳聚糖自组装成纳米胶束,然后再与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、N-羟基琥珀酰亚胺、二环己基碳二亚胺、N,N'-二异丙基碳二亚胺、1-羟基苯并三唑、六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷、N,N-二异丙基乙胺等催化剂中的一种或几种混合,再在超声波和pH值调节剂的作用下与氟苯尼考混合,经透析处理,冷干制得固体氟苯尼考-壳聚糖/长链羧酸钠纳米胶束冻干粉.本方法制备工艺复杂,生产成本高,也没有报道制备成的氟苯尼考纳米胶束的溶解度.
用毒性较低的环糊精包合技术提高难溶药物的溶解度和溶出度是常用的药物增溶增效方法.邓利斌等[7]、魏小藏等[8]和桂亮等[9]等分别用2-羟丙基-β-环糊精或β-环糊精包合氟苯尼考来提高其在水中的溶解性.浙江万方公司[10,11]用2-羟丙基-β-环糊精与β-环糊精混合物为包合剂,丙二醇嵌段聚醚、聚乙二醇单甲醚等为分散剂,琥珀酸钠、甘油等为潜溶剂,采用分子包合技术,在80~83℃下对氟苯尼考进行包合,经喷雾干燥制备了氟苯尼考包合制剂,产品溶解度约为46.3 g/L,代表国内最高物理增溶水平.但以该类β-环糊精的包合物制成的口服液,溶解度仍达不到要求,水中易析出絮状物,规模化养殖供氟苯尼考饮水剂时,易堵塞饮水管道,达不到药效浓度.且以2-羟丙基-β-环糊精的包合物制成的口服液,制备成本高.杨少林[12]报道了分别以α、β、γ-环糊精在水中80℃下包合氟苯尼考制备氟苯尼考包合物的方法,该法制备的包合物再通过与葡萄糖混合,制备了氟苯尼考可溶性粉,掩盖了氟苯尼考的苦味,溶解度比原药提高了4倍.总之,包合技术对氟苯尼考的溶出度提高较显著,但存在环糊精包合物含药量低、包合率不高、包合过程中需要较高的包合温度,使用各种添加剂,存在产生增敏作用的危险.
固体分散体(Solid Dispersion,SD)是指将药物以分子、无定型、微晶态等高度分散状态均匀分散在载体中形成的一种以固体形式存在的分散系统.固体分散体可以增加难溶性药物的溶出度、提高药物生物利用度、延缓药物释放、增加药物稳定性和液体药物固体化等,是最早使用的提高难溶药物溶解性的方法之一.洪涛等[13]和马素英等[14]分别以PVPK为载体,用溶剂法或溶剂熔融法制备了PVPK氟苯尼考固体分散体,与氟苯尼考原粉相比,PVPK氟苯尼考固体分散体的溶解度分别提高了13倍和2~3倍.刘永琼等[15]用低聚糖为辅料,按氟苯尼考与低聚糖1∶9(m∶m)的比例在45℃的水中制成饱和溶液,经喷雾干燥,制备了低聚糖氟苯尼考可溶性粉,溶出度是原药的42.15倍.刘畅等[16]用尿素/PVPK30为联合载体,甲醇为溶剂,80℃温度下旋转蒸发,并附加360 W超声波处理,制备了PVPK30氟苯尼考固体分散体,溶解度仅为3.11 g/L.周庆福等[17]和李胜利等[18]分别用PEG/泊洛沙姆为载体,用熔融法制备了氟苯尼考固体分散体,溶解度也仅为原药的2倍.彭健波等[19]利用Plasdone S630为载体,采用热熔挤出技术制备了氟苯尼考固体分散体,溶解度为原药的3.8倍.总之,虽然对氟苯尼考固体分散体的研究较多,但至今为止,所报道的氟苯尼考固体分散体对氟苯尼考的增溶效果不太显著,且该类剂型还没有质量标准,在动物体内的生物利用度以及动力学变化也没有详尽的报道.
沈建军等[20]以泊洛沙姆188和PVPK30为助溶剂,β-环糊精和羟丙基-β-环糊精为载体,制备了一种氟苯尼考可溶性粉,生产工艺较为简单,提高了产品的水溶性,但泊洛沙姆188和PVPK30售价较贵,且添加量(5%~10%)较大,制造成本较高.马小平等[21]以羧甲基纤维素钠、甲基纤维素、卡波姆971p、聚维酮、阿拉伯胶、海藻酸钠等为吸收促进剂,β-环糊精为载体,采用离心喷雾或冻干工艺生产了一种可溶性氟苯尼考组合物.配方中采用的吸收促进剂羧甲基纤维素钠、甲基纤维素、海藻酸钠等,即使在热水中分散速度也很慢,且添加量均在10%以上,膨胀倍数较大,生产需要大量的水,产能低,成本高.且吸收促进剂将会严重影响产品在水中的分散、溶解和释放速度,临床应用不便.
化学修饰增溶法是通过化学反应,对氟苯尼考的仲羟基进行修饰,制备成氟苯尼考前药,以提高氟苯尼考的溶解度.氟苯尼考前药进入动物体内后,再在生理条件下分解释放出氟苯尼考,发挥抗菌作用,具有毒性小、作用时间长的优势.
依据氯霉素单琥珀酸酯的制备原理和方法,Yerramill等[22]、李逐波等[23]和张伟[24]分别报道采用氟苯尼考与琥珀酸酐在碱性催化剂如吡啶、4-二甲氨基吡啶、N,N-二环己基碳二亚胺、叔胺等作用下,制备了氟苯尼考琥珀酸单酯,再与碱或精氨酸、赖氨酸等碱性氨基酸成盐,得到了得到相应水溶性极好的氟苯尼考琥珀酸单酯盐(图2),这些盐的水溶解度可达500 g/L,能满足制备注射液、水针或粉针的要求,可以很好地解决氟苯尼考水溶性差的问题,同时也掩盖了氟苯尼考的苦味.国内公司有小规模生产和销售.氟苯尼考琥珀酸单酯盐合成方法简单,适合工业化生产,但氟苯尼考琥珀酸单酯在体内代谢后,存在生成体内非必需物琥珀酸的缺点,长期使用存在产生副作用的风险.
原研商先灵-葆雅公司[25,26]利用药物前体设计理论,通过磷酸化反应对氟苯尼考的仲羟基进行了化学修饰,制备了氟苯尼考磷酸酯前药及其各种盐类(图3).研究表明,修饰物后的氟苯尼考磷酸酯极易溶于水,溶解度约为700 g/L,可与各种药物赋形剂和/或载体配伍.该类前药在体内可分解成游离的氟苯尼考原药,完全能满足临床各种制剂如饮水剂、注射液等剂型的要求.但是,现有的氟苯尼考磷酸酯前药的制备工艺条件苛刻,所需试剂昂贵,实现大规模工业化生产难度较大.
图2 氟苯尼考琥珀酸单酯盐的制备
图3 氟苯尼考磷酸酯及其各种盐
参照氟苯尼考磷酸酯前药原理,也有人通过硫酸化反应对氟苯尼考结构进行了修饰,制得了氟苯尼考硫酸酯及其各种盐类(图4).修饰物后所得到的氟苯尼考硫酸酯极易溶于水,溶解度约为750 mg/mL,可与各种药物赋形剂和/或载体配伍,制备饮水剂和注射液等剂型.但是同样存在制备工艺复杂,成本高的缺陷.
先灵-普劳公司[27]通过氟苯尼考的仲羟基与带铵基基团的酰氯缩合,制备了系列含氮氟苯尼考碳酸酯或羧酸酯化合物,代表性的氟苯尼考碳酸酯化合物如图5所示,代表性的氟苯尼考羧酸酯化合物如图6所示.这些化合物具有充分的水溶性,可以提供氟苯尼考水溶性前药或氟苯尼考类似物水溶性前药所需要的功能.初步研究表明:该两系列氟苯尼考水溶性前药在体内均可分解为氟苯尼考,可用于动物疾病的预防和治疗.专利[28]也公开了氟苯尼考与多种氨基酸特别是甘氨酸、鸟氨酸和赖氨酸经酯化反应制备的氟苯尼考酯前药及应用.
图4 氟苯尼考硫酸酯的结构
图5 代表性的氟苯尼考碳酸酯
图6 代表性的氟苯尼考羧酸酯
利用硝酸根的供电性与氟苯尼考的羟基通过氢键制备了氟苯尼考复合物(图7),与氟苯尼考相比,该复合物在水中的溶解性大大增加,稳定性好,可用于氟苯尼考水溶性制剂的制备.
为充分发挥氟苯尼考的药物功能,增大氟苯尼考水溶性是提高氟苯尼考生物利用度的关键,也是目前一段时间企业必须解决的实际问题.从现有文献报道中可以看出,物理增溶法的增溶效果普遍不理想,产品溶解速度慢,药物溶出度小,难以满足制剂和浓配使用需要.相对于从制剂工艺角度改进的物理增溶技术,依据前药原理,从氟苯尼考本身的结构对其进行修饰和改造的化学方法是彻底解决氟苯尼考溶解性难题的根本途径.但是,氟苯尼考化学修饰增溶方法尚处于初级研究和小规模生产阶段,再加上制备工艺较复杂,存在污染问题,制造成本是限制其走向大规模生产的一个瓶颈.笔者认为,氟苯尼考的增溶技术,可以从以下两个方面进行研究拓展:1)选用营养物质或其他药物与氟苯尼考偶联,在增溶的基础上,发挥协同增效机制,减少药物用量,延长药物作用时间,降低成本;2)优化改进现有氟苯尼考前药的生产工艺,降低生产成本,做到真正的生产绿色化.
图7 氟苯尼考硝酸复合物