高中函数求最值题型“一题多解”的方法及心得

2019-11-26 22:53:22
关键词:一题多解一题例题

例题已知函数的最大值为M,最小值为m,则的值为多少?

方法二(三角换元法):因为x∈[-3,1],且(很重要的隐含条件,多种解法都是基于这个隐含条件),所以可设(题中出现平方和,常用三角换元,唯一需要注意的是θ的范围,必须保证两项都是非负),所以y=2cosθ+2sinθ因为所以θ+,则所以得

方法三(均值不等式):因为函数y=所以y=(当且仅当x=-1时等号成立),所以ymax=又因为(当且仅当x=1或者x=-3时等号成立),所以ymin=2,则运用此方法首先要确定的根式有意义,然后根据公式求出函数的最大值,最后再对y2求出最小值,从而求解。

方法五(向量法):设向量a=(1,1),b=则y=a·b。令有p2+q2=4,则b=(p,q)的终点表示圆心在原点,半径为2的圆在第一象限部分上的点。所以向量a=(1,1),b的夹角范围为所以,所以ymin=2,得

在解答该问题时,上述解题思路有共通之处,但是也不尽相同,所应用的数学知识点也不相同,却都能够得到一样的计算结果。其中方法一,二,三都是函数章节的知识,同学们比较容易想到,方法四和五结合了函数与数列、函数与向量的知识,有些同学就不太容易想到。这就说明在解答数学问题的过程中,充分利用与问题有直接或间接联系的知识点,可以开拓思路,从多个角度进行问题的解答,实现“一题多解”。

猜你喜欢
一题多解一题例题
由一道简单例题所引发的思考
一题多解
由一道简单例题所引发的思考
一题多解在于活
例谈一题多解
向量中一道例题的推广及应用
例析初中数学的多解问题
未来英才(2016年18期)2017-01-05 13:37:26
一题多解的教学问题分析
问渠哪得清如许 为有源头活水来
高中数学“一题多解”的学习心得
考试周刊(2016年78期)2016-10-12 13:13:51