李建峰 李强 张承韶 陈修福 赵永生
[摘要]目前,治疗骨质疏松性椎体压缩性骨折(OVCF)的手术方式主要为经皮椎体成形术及经皮椎体后凸成形术。这两种微创手术方式已得到广泛应用,并为广大OVCF病人解除了病痛,但是术后往往有些病人会发生新发椎体压缩性骨折。本文将对椎体成形术后邻椎再骨折危险因素进行综述,以提高对邻椎再骨折危险因素的认识,预防邻椎再骨折的发生。
[关键词]椎体成形术;脊柱骨折;骨质疏松性骨折;危险因素;综述
[中图分类号]R683.2[文献标志码]A[文章编号]2096-5532(2019)03-0367-05
随着我国人口老龄化加重,骨质疏松症病人逐年增多。有文献报道,我国每年约有110万人发生骨质疏松性椎体压缩性骨折(OVCF)[1]。经皮椎体成形术(PVP)及经皮椎体后凸成形术(PKP)在缓解疼痛、恢复椎体高度方面效果显著,且具有创伤小、恢复快、避免长期卧床导致的一些并发症等优点[2],已成为较成熟的技术,并普遍应用于OVCF的治疗。但术后再骨折的发生也严重影响着病人的生活质量。故发现椎体成形术后再骨折的危险因素,在治疗和生活中避免这些危险因素,显得尤为重要。近年来,越来越多的研究报道了椎体成形术后邻椎再骨折的危险因素,本文就此方面进行了综述。
1椎体成形术后再骨折的发生率及发生时间
目前,关于OVCF椎体成形术后再骨折的发生率,文献报道尚不统一,有文献报道为6.81%~37.95%[3],有文献报道为6.2%~51.8%[4]。再骨折多发生于手术椎体的邻近椎体[4-10]。关于术后再骨折的时间,多数文献报道术后6个月内为邻椎再骨折的高发期,术后1年内为再骨折的主要发生期[8-9]。因此术后1年内,尤其是6个月内,应该做好随访,叮嘱病人采取相应预防措施,以降低再骨折的發生率。
2椎体成形术后再骨折的危险因素
2.1手术治疗及手术方式
椎体成形术的安全性及有效性已得到人们的广泛认同。但是椎体成形术后再骨折的风险是否会增加仍存在争议。XIE等[10]从文献中选取了7个随机对照试验,2个试验结果显示行椎体成形术或保守治疗与邻椎再骨折无相关性;但其余5个试验结果显示,椎体成形术组邻椎再骨折发生率要高于保守治疗组,且差异有统计学意义。YI等[11]对290例病人随访4年发现,椎体成形术组的新发骨折时间比保守治疗组要早得多,而且邻椎骨折发生率增高,但最终试验结果显示椎体成形术组与保守治疗组邻椎再骨折发生率差异无统计学意义。FALOON等[12]对258例病人共361个骨折椎体研究显示,保守治疗的病人再骨折风险较PKP治疗的病人高2.28倍。也有研究表明,椎体成形术并没有增加邻椎再骨折风险[13-16]。部分研究认为不同手术方式之间,椎体新发骨折的发生率可能存在差异。ZHAO等[17] 对16个随机对照试验中的2 046例病人研究表明,选择PKP治疗较选择PVP治疗有较低的新发骨折风险。对于骨质疏松病人,骨水泥的强化可能会导致手术椎体内部强度及刚度不均,此时如果发生骨水泥渗漏,使椎间盘损伤,加上过早过度活动,可能会影响邻椎所受应力,增加邻椎再骨折风险。
2.2脊柱椎体及椎间盘生物力学变化
2.2.1脊柱后凸角脊柱后凸角过大或过小都会改变脊柱力线,进而影响各椎体之间的应力,加重各椎体所受应力的不均,加上骨水泥强化后椎体局部强度及刚度增大,术后邻椎再骨折风险也将会增大。有研究表明,椎体成形术后脊柱局部后凸角的变化是再骨折的危险因素,再骨折的发生率随术前脊柱后凸角的增大而增大[18-19]。有研究显示,脊柱后凸角的过度矫正以及椎体前柱高度的过度恢复均与邻椎再骨折存在正相关关系,每矫正1°的后凸角度,骨折风险将增加9%,每增高1%的椎体前柱高度,骨折风险将增加7倍[20]。但也有许多研究认为,椎体成形术后脊柱后凸角的变化并不是邻椎再骨折的影响因素[3,8,21-23]。
2.2.2椎体高度恢复多数脊柱外科医师认为,压缩的椎体应当尽可能恢复到原先的椎体高度。但部分研究表明,椎体高度过度恢复也是再骨折的危险因素。MA等[4]认为,椎体高度恢复虽可减轻脊柱后凸畸形导致的并发症,恢复脊柱生物力学,减轻脊柱不正常曲率,但是也可能增加邻近椎体的负荷,同时椎旁软组织张力随着椎体高度的恢复而增加,致使邻椎负荷进一步加大,最终会导致新发椎体压缩性骨折。KIM等[24]研究表明,经PVP治疗后,伤椎高度恢复通常为2.5~8.4 mm,平均恢复率为17%~29%,如果高度恢复大于10 mm,则会加重力学传导不均,易引起邻椎骨折。而LU等[25]研究认为,椎体骨折使椎体应力负荷分布发生较大改变,椎体高度恢复和后凸角度纠正能够改善脊柱各椎体之间的应力不均。也有研究表明,术后椎体高度恢复程度与邻椎再骨折并无相关性[8,23]。
2.2.3椎体骨折病史、伤椎位置、伤椎数量以及手术椎体数量存在椎体骨折病史的病人,其脊柱生物力学已经发生改变,给予椎体成形术治疗后,邻椎所承受应力不均概率相对较大,可能会增加邻椎再骨折风险。KIM等[26]对666例病人的研究显示,对于存在骨折病史的病人,其椎体成形术后再骨折风险增高3.4倍,若术前发生2个及以上的椎体骨折,则再骨折的风险将增加7.4倍。胸腰段为人体脊柱活动度较大的节段,术后该节段活动也相对较多,使此处术椎与邻椎之间发生应力传导不均的概率增加,邻椎骨折风险也会相应增加[27]。SUN等[9]研究认为,手术椎体位于胸腰段是术后邻椎再骨折的重要危险因素。
术前骨折椎体数目越多,脊柱畸形就越严重,脊柱力线改变也越大,术椎及伤椎之间发生应力不均的可能性就越大,进而导致发生邻椎骨折的风险增大。REN等[8]的研究显示,初始骨折椎体数每增加1个椎体,新发骨折风险将增加2.58倍。LI等[28]的研究表明,初始骨折椎体数是术后再骨折的危险因素,且接受骨水泥强化的骨折椎体数目越多,术椎及邻椎之间应力分布不均概率就会越大,就越易导致邻椎骨折。有许多研究表明,经椎体强化术治疗的椎体数量越多,术后邻椎再骨折风险越大[3,8,24,29]。
2.2.4终板损伤、椎间盘损伤与退变椎体发生压缩性骨折的同时,椎间盘及终板往往也会发生损伤,从而改变了椎体之间的应力平衡,使邻椎所受应力不均,进而导致邻椎骨折。ZHAO等[30]研究认为,骨水泥强化所引起的邻椎终板偏移及椎间盘受压增高是导致邻椎骨折的重要原因。BAROUD等[31]的研究表明,由于骨水泥强化,手术椎体的强度增高为正常椎体的35倍,刚度也增高为正常椎体的12倍,使相邻椎间盘及邻椎终板所受应力增大,导致邻椎终板生理内凹减轻,椎体受力改变,骨折风险增大。
2.3骨水泥
2.3.1骨水泥类型目前,关于骨水泥类型对术后再骨折影响的研究报道较少,不同类型骨水泥优缺点各有不同,最为常用的骨水泥种类为聚甲基丙烯酸甲酯(PMMA)骨水泥。DICKEY等[32]对PMMA骨水泥和玻璃离子水门汀(GPC)骨水泥进行分析比较发现,应用GPC骨水泥强化椎体,对椎体应力分布产生的影响最小,在生理负荷下,强化椎体与正常椎体有相似的力学特点,使用无铝的GPC骨水泥可能有助于预防邻椎再骨折。ABOUAZZA等[33]研究也表明,与PMMA骨水泥相比,GPC骨水泥最大抗压负荷更接近术前椎体最大抗压负荷,术后对邻椎的应力较小,邻椎再骨折风险也较低。GILULA等[34]对PMMA骨水泥和双酚A双甲基丙烯酸缩水甘油酯(BIS-GMA)骨水泥的比较研究显示,PMMA骨水泥组再骨折发生率为31.9%,高于BIS-GMA骨水泥组的27.8%,认为这可能是由于BIS-GMA骨水泥的机械性能和材质要强于PMMA骨水泥所致,应用BIS-GMA骨水泥强化椎体,更有助于手术椎体生理负荷的传导。钱明等[35]的研究也表明,与PMMA骨水泥相比,BIS-GMA骨水泥可以降低术后邻椎再骨折的风险。
2.3.2骨水泥注入量椎体成形术中注入骨水泥會加强椎体强度及刚度,但同时会使术椎和邻椎之间应力增加,从而增加邻椎再骨折的风险。有研究认为,随着骨水泥体积的增加,骨水泥渗漏和邻椎骨折的风险明显增加,建议骨水泥注入的体积约为椎体体积的1/4[36]。LIEBSCHNER等[37]认为,如果骨水泥注入量不足椎体体积的15%,则很难维持椎体的强度和硬度,使再骨折风险加大。JIN等[38]研究认为,要使椎体刚度达到正常水平,骨水泥注入量应达到椎体体积的30%,若超过椎体体积的30%,则椎体刚度会超过正常骨骼,并且椎体局部所受应力与骨水泥填充量呈正相关关系,当骨水泥注入量>椎体体积的70%时,松质骨所受应力明显增加,邻椎再骨折风险也明显加大。但是也有研究认为,骨水泥注入量与新发邻椎骨折不相关[3]。
2.3.3骨水泥渗漏骨水泥渗漏至椎间隙,会加速椎间盘损伤退变,致使椎间盘与终板间应力负荷传导不均,破坏骨折椎体与邻近椎体之间的应力平衡,进而诱发邻椎骨折。伴有椎体裂隙征、骨皮质破裂、所注骨水泥黏稠度低及骨水泥注入量大的病人,可能有较高的骨水泥渗漏风险[39-41],而使用高黏度骨水泥可以预防严重渗漏和相应临床症状[42-43]。许多研究表明,骨水泥椎间隙渗漏是引起邻椎再骨折的重要因素[7,44-46]。SUN等[47]的研究表明,假如骨水泥只局限于骨小梁范围内,没有渗漏,则邻椎骨折风险为7%;若骨水泥达到终板水平,则邻椎骨折风险上升到29%;而骨水泥达到椎间盘水平,则邻椎骨折风险上升到44%。
2.3.4骨水泥穿刺路径和骨水泥分布骨水泥的强度远高于椎体松质骨,其分布形态会影响到椎体各部分所受的应力。如果骨水泥弥散均匀,椎体各部分骨质之间的应力分布可能会相对均衡,发生术椎塌陷及邻椎再骨折的可能性就会降低。如果骨水泥弥散不均,椎体各部分骨质之间的应力传导可能会相对不均衡,随着病人术后活动量增多及活动幅度增大,术椎塌陷及邻椎再骨折的风险可能会增大。LIEBSCHNER等[37]研究表明,单侧穿刺容易导致骨水泥在椎体中分布不对称,即使提高单侧载荷传递,也较难获得理想的效果;而双侧穿刺使骨水泥分布比较均匀,术后邻椎骨折的概率低于单侧穿刺。但也有研究显示,穿刺途径对再骨折的影响无统计学意义[28,43]。SUN等[47]研究表明,骨水泥在椎体内过度弥散将会增大邻椎骨折风险。但HE等[48]认为,广泛均匀的水泥分布可以有效改善后凸角和椎体高度,改善椎体之间的应力,不会导致相邻椎体骨折。
2.4骨质疏松
目前,骨质疏松被广泛认为是椎体成形术后邻椎再骨折的重要危险因素,绝大多数临床研究结果表明,骨质疏松是邻椎再骨折的危险因素[3-4,7-9,21,25,43-45]。有些研究更是认为,骨质疏松是邻椎再骨折的根本影响因素[12,46]。因此,对于骨质疏松病人,应积极坚持抗骨质疏松治疗,以预防术后再骨折的发生。
2.5其他因素
许多研究结果表明,高龄是PVP术后再骨折的高危因素[3,12,24,49-50]。关于其机制,普遍认为是老年人骨密度降低。也有研究发现,低体质量指数是再骨折的危险因素[21,43]。由于雌激素活性和低体质量指数呈正相关,雌激素可刺激成骨细胞分泌骨质,从而增加骨量,因此,体质量指数越低,雌激素水平也越低,雌激素对与衰老相关骨丢失的保护作用降低,加重骨质疏松,从而加大椎体再骨折的风险。另有研究表明,绝经后期女性发生再骨折的可能性较大[28],这也主要与雌激素降低导致的骨质疏松有关。如果体内破骨活动过于旺盛,而成骨活动较弱,也会导致骨质疏松,增大再骨折风险。ANGELES等[50]研究表明,体内25-(OH)D3血清水平较低与PVP治疗后新发骨折有关。CAO等[3]研究表明,长期使用类固醇药物会加重骨质疏松,是术后再骨折的高危因素,而且非甾体类抗炎药的使用也是再骨折的危险因素。
综上所述,目前普遍认同的椎体成形术后邻椎再骨折危险因素有骨质疏松、骨水泥渗漏及局部生物力学改变等,而手术方式、脊柱畸形矫正、骨水泥类型、骨水泥剂量、骨水泥黏度、骨水泥穿刺途径及骨水泥分布等因素尚有争议。因此,坚持抗骨质疏松治疗,选择合适的骨水泥材料,提高手术技巧,避免骨水泥渗漏,可能会降低邻椎再骨折风险。目前关于骨水泥弥散类型、术后抗骨质疏松治疗药物类型及肌少症等因素对邻椎再骨折影响的研究较少,有待进一步研究。
[參考文献]
[1]SI L, WINZENBERG T M, JIANG Q, et al. Projection of osteoporosis-related fractures and costs in China:2010-2050[J]. Osteoporosis International, 2015,26(7):1929-1937.
[2]LI Yonggang, HAI Yong, LI Liping, et al. Early effects of vertebroplasty or kyphoplasty versus conservative treatment of vertebral compression fractures in elderly polytrauma patients[J]. Archives of Orthopaedic and Trauma Surgery, 2015,135(12):1633-1636.
[3]CAO Junming, KONG Lingde, MENG Fantao, et al. Risk factors for new vertebral compression fractures after vertebroplasty:a meta-analysis[J]. ANZ Journal of Surgery, 2016,86(7/8):549-554.
[4]MA X L, XING D, MA J X, et al. Risk factors for new vertebral compression fractures after percutaneous vertebroplasty[J]. Spine, 2013,24(12):E713-E722.
[5]DEIBERT C P, GANDHOKE G S, PASCHEL E E, et al. A longitudinal cohort investigation of the development of symptomatic adjacent level compression fractures following balloon-assisted kyphoplasty in a series of 726 patients[J]. Pain Physician, 2016,19(8):E1167-E1172.
[6]KIM B S, HUM B, PARK J C, et al. Retrospective review of procedural parameters and outcomes of percutaneous vertebroplasty in 673 patients[J]. Interventional Neuroradiology, 2014,20(5):564-575.
[7]BAE J S, PARK J H, KIM K J, et al. Analysis of risk factors for secondary new vertebral compression fracture following percutaneous vertebroplasty in patients with osteoporosis[J]. World Neurosurgery, 2017,99(3):387-394.
[8]REN Hailong, JIANG Jianming, CHEN Jianting, et al. Risk factors of new symptomatic vertebral compression fractures in osteoporotic patients undergone percutaneous vertebroplasty[J]. European Spine Journal, 2015,24(4):750-758.
[9]SUN Gang, TANG Hai, LI Min, et al. Analysis of risk factors of subsequent fractures after vertebroplasty[J]. European Spine Journal, 2014,23(6):1339-1345.
[10]XIE Weixing, JIN Daxiang, WAN Chao, et al. The incidence of new vertebral fractures following vertebral augmentation[J]. Medicine, 2015,37(94):1-7.
[11]YI Xiaodong, LU Hailin, TIAN Fei, et al. Recompression in new levels after percutaneous vertebroplasty and kyphoplasty compared with conservative treatment[J]. Archives of Orthopaedic and Trauma Surgery, 2014,134(1):21-30.
[12]FALOON M J, RUOFF M, DESHPANDE C, et al. Risk factors associated with adjacent and remote-level pathologic vertebral compression fracture following balloon kyphoplasty:2-year follow-up comparison versus conservative treatment[J]. Journal of Long-term Effects of Medical Implants, 2015,25(4):313-319.
[13]ZHANG Hui, XU Caiyuan, ZHANG Tongxing, et al. Does percutaneous vertebroplasty or balloon kyphoplasty for osteoporotic vertebral compression fractures increase the incidence of new vertebral fractures? a Meta-analysis[J]. Pain Physician, 2017,20(1):E13-E28.
[14]管華清,郭炯炯,姜为民,等. 椎体强化术治疗脊柱骨质疏松性三明治骨折术后夹心椎再骨折的影响因素分析[J]. 中华创伤杂志, 2018,34(1):793-798.
[15]LI H M, ZHANG R J, GAO H, et al. New vertebral fractures after osteoporotic vertebral compression fracture between balloon kyphoplasty and nonsurgical treatment PRISMA[J]. Medicine, 2018,97(40):E8458-E8467.
[16]YANG W, YANG J, LIANG M. Percutaneous vertebroplasty does not increase the incidence of new fractures in adjacent and nonadjacent vertebral bodies[J]. Clin Spine Surg, 2018,31(11):488-496.
[17]ZHAO Song, XU Changyan, ZHU Aoran, et al. Comparison of the efficacy and safety of 3 treatments for patients with osteoporotic vertebral compression fractures[J]. Medicine, 2017,96(26):1-8.
[18]BAEK S W, KIM C, CHANG H. The relationship between the spinopelvic balance and the incidence of adjacent vertebral fractures following percutaneous vertebroplasty[J]. Osteoporosis International, 2015,26(5):1507-1513.
[19]BORENSZTEIN M, CAMINO W G, POSADAS M M, et al.Analysis of risk factors for new vertebral fracture after percutaneous vertebroplasty[J]. Global Spine J, 2018,8(5):446-452.
[20]MOVRIN I, VENGUST R, KOMADINA R. Adjacent vertebral fractures after percutaneous vertebral augmentation of osteoporotic vertebral compression fracture:a comparison of balloon kyphoplasty and vertebroplasty[J]. Archives of Orthopaedic and Trauma Surgery, 2010,130(9):1157-1166.
[21]LEE D G, PARK C K, PARK C J, et al. Analysis of risk factors causing new symptomatic vertebral compression fractures after percutaneous vertebroplasty for painful osteoporotic vertebral compression fractures:a 4-year follow-up[J]. Journal of Spinal Disorders & Techniques, 2015,28(10):E578-E583.
[22]KATZMAN W B, VITTINGHOFF E, KADO D M, et al. Thoracic kyphosis and rate of incident vertebral fractures:the Fracture Intervention Trial[J]. Osteoporosis International, 2016,27(3):899-903.
[23]LIN Jianher, WANG Shenghao, LIN Enyuan, et al. Better height restoration, greater kyphosis correction, and fewer refractures of cemented vertebrae by using an intravertebral reduction device:a 1-year follow-up study[J]. World Neurosurgery, 2016,90(3):391-396.
[24]KIM S H, KANG H S, CHOI J A, et al. Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty[J]. Acta Radiologica (Stockholm, Sweden:1987), 2004,45(4):440-445.
[25]LU Jiye, JIANG Guoqiang, LU Bin, et al. The positive correlation between upper adjacent vertebral fracture and the kyphosis angle of injured vertebral body after percutaneous kyphoplasty:an in vitro study[J]. Clinical Neurology and Neurosurgery, 2015,139(12):272-277.
[26]KIM S H, CHOI H S, RHEE Y, et al. Prevalent vertebral fractures predict subsequent radiographic vertebral fractures in post-menopausal Korean women receiving antiresorptive agent[J]. Osteoporosis International, 2011,22(3):781-787.
[27]BRUNO A G, BURKHART K, ALLAIRE B A, et al. Spinal loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region[J]. Journal of Bone and Mineral Research, 2017,32(6):1282-1290.
[28]LI Hua, YANG Dalong, MA Lei, et al. Risk factors associa-ted with vertebroplasty after menopause:a retrospective study[J]. Medical Science Monitor, 2017,23(11):5271-5276.
[29]YANG Shengping, CHEN Changxian, WANG Hanlong, et al. A systematic review of unilateral versus bilateral percuta-neous vertebroplasty/percutaneous kyphoplasty for osteoporotic vertebral compression fractures[J]. Acta Orthopaedica et Traumatologica Turcica, 2017,51(4):290-297.
[30]ZHAO Wentao, QIN Daping, ZHANG Xiaogang, et al. Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture:a three-dimensional finite element analysis[J]. Journal of Orthopaedic Surgery and Research, 2018,13(6):1-10.
[31]BAROUD G, NEMES J, HEINI P, et al. Load shift of the intervertebral disc after a vertebroplasty:a finite-element study[J]. European Spine Journal, 2003,12(4):421-426.
[32]DICKEY B T, TYNDYK M A, DOMAN D A, et al. In silico evaluation of stress distribution after vertebral body augmentation with conventional acrylics, composites and glass polyal-kenoate cements[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012,5(1):283-290.
[33]ABOUAZZA O A, CONDON F, HANNIGAN A, et al. In vitro comparative assessment of the mechanical properties of PMMA cement and a GPC cement for vertebroplasty[J]. J Orthop, 2016,13(2):81-89.
[34]GILULA L, PERSENAIRE M. Subsequent fractures post-vertebral augmentation:analysis of a prospective randomized trial in osteoporotic vertebral compression fractures[J]. American Journal of Neuroradiology, 2013,34(1):221-227.
[35]钱明,潘俊,孟斌,等. 聚甲基丙烯酸甲酯骨水泥与Cortoss骨水泥生物力学性能及聚合温度比较[J]. 中国组织工程研究, 2012,16(16):2935-2938.
[36]LIN Dasheng, HAO Jianming, LI Lin, et al. Effect of bone cement volume fraction on adjacent vertebral fractures after unilateral percutaneous kyphoplasty[J]. Clinical Spine Surge-ry, 2016,30(3):E270-E275.
[37]LIEBSCHNER M A, ROSENBERG W S, KEAVENY T M. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty[J]. Spine, 2001,26(14):1547-1554.
[38]KIM J M, SHIN D A, BYUN D H, et al. Effect of bone cement volume and stiffness on occurrences of adjacent vertebral fractures after vertebroplasty[J]. Journal of Korean Neurosurgical Society, 2012,52(5):435-440.
[39]ZHAN Yi, JIANG Jianzhong, LIAO Haifen, et al. Risk factors for cement leakage after vertebroplasty or kyphoplasty:a Meta-analysis of published evidence[J]. World Neurosurgery, 2017,101(5):633-642.
[40]GAO Chang, ZONG Min, WANG Wentao, et al. Analysis of risk factors causing short-term cement leakages and long-term complications after percutaneous kyphoplasty for osteoporotic vertebral compression fractures[J]. Acta Radiologica, 2018,59(5):577-585.
[41]羅大伟,郑修军,柳翔云,等. 经皮椎体后凸成形术对有裂隙征椎体压缩骨折的效果[J]. 青岛大学医学院学报, 2014,50(5):411-413.
[42]LIU Tie, LI Zhe, SU Qingjun, et al. Cement leakage in osteoporotic vertebral compression fractures with cortical defect using high-viscosity bone cement during unilateral percuta-neous kyphoplasty surgery[J]. Medicine, 2017,96(25):7216-7231.
[43]ZHANG Zhaofei, YANG Junlong, JIANG Huanchang, et al. An updated comparison of high-and low-viscosity cement vertebroplasty in the treatment of osteoporotic thoracolumbar vertebral compression fractures:a retrospective cohort study[J]. International Journal of Surgery, 2017,43(7):126-130.
[44]ZHANG Zitao, FAN Jin, DING Qingfeng, et al. Risk factors for new osteoporotic vertebral compression fractures after vertebroplasty:a systematic review and meta-analysis[J]. Journal of Spinal Disorders & Techniques, 2013,26(4):E150-E157.
[45]BS K S, CHO K J, PARK J W. Early adjacent vertebral fractures after balloon kyphoplasty for osteoporotic vertebral compression fractures[J]. Asian Spine Journal, 2018,12(5):1155-1161.
[46]HUANG Z F, XIA P, LIU K, et al. Analysis of risk factors of new fracture of vertebral body after percutaneous kyphoplasty in patients with primary osteoporotic fracture of thoracic and lumbar spine[J]. Journal of Biomaterials and Tissue Enginee-ring, 2018,8(5):756-759.
[47]SUN Y C, TENG M M, YUAN W S, et al. Risk of post-vertebroplasty fracture in adjacent vertebral bodies appears correlated with the morphologic extent of bone cement[J]. Journal of the Chinese Medical Association, 2011,74(8):357-362.
[48]HE Xin, LI Hui, MENG Yibin, et al. Percutaneous kyphoplasty evaluated by cement volume and distribution:an analysis of clinical data[J]. Pain Physician, 2016,19(7):495-506.
[49]TAKAHARA K, KAMIMURA M, MORIYA H, et al. Risk factors of adjacent vertebral collapse after percutaneous vertebroplasty for osteoporotic vertebral fracture in postmenopausal women[J]. BMC Musculoskeletal Disorders, 2016,17(12):881-887.
[50]ANGELES M F, JORDI B, JOSEP L C, et al. Risk factors for the development of vertebral fractures after percutaneous vertebroplasty[J]. J Bone Mineral Res, 2013,28(8):E1821-E1829.
(本文編辑 马伟平)