葛文超 罗文才 陈斌 张宏瑞 谷星慧 张立猛
摘要:【目的】測定3种丝孢类虫生真菌对西花蓟马[Frankliniella occidentalis(Pergande)]成虫的毒力,为筛选出对西花蓟马成虫高毒力的虫生真菌及生物防治提供依据。【方法】采用浸渍法在室内测定3种丝孢虫生真菌(球孢白僵菌、黄绿绿僵菌和玫烟色棒束孢)共14株菌株对西花蓟马成虫的侵染致死率;从3种丝孢虫生真菌中选取对西花蓟马成虫相对致病力较好的高毒力菌株各1株,测定其在不同浓度(浓度梯度分别为1.0×104、1.0×105、1.0×106、1.0×107和1.0×108孢子/mL)下对西花蓟马成虫的毒力。【结果】用1.0×107孢子/mL的球孢白僵菌菌株(WSWM81832、WSWL21831、WSWM1018315、WSWH21833和WSWL21836)、黄绿绿僵菌菌株(HLT17103、NGS21751、YKZ51712和WSWL51721)和玫烟色棒束孢菌株(WSWH31836、WSWL51831、WTS101822、NGS118310和WSWL21837)接种西花蓟马成虫10 d后,西花蓟马成虫的累积校正死亡率分别为68.45%~75.60%、67.35%~82.65%和61.45%~70.67%。球孢白僵菌WSWL21836、黄绿绿僵菌WSWL51721和玫烟色棒束孢WSWL21837菌株以1.0×104~1.0×108孢子/mL的孢子悬浮液接种西花蓟马成虫后,第10 d时西花蓟马成虫的累积校正死亡率分别为56.67%~82.33%、56.67%~89.67%和48.33%~76.67%;各菌株的毒力回归方程分别为Y=3.2543+0.3332X(r=0.9167)、Y=3.5878+0.2874X(r=0.9656)和Y=3.8188+0.2082X(r=0.9925),致死中浓度(LC50)分别为2.63×104、4.17×104和7.85×105孢子/mL,在1.0×108孢子/mL浓度下对西花蓟马成虫侵染致病的致死中时间(LT50)分别为5.67、4.91和6.12 d。【结论】黄绿绿僵菌菌株WSWL51721和球孢白僵菌菌株WSWL21836对西花蓟马成虫具有较强的毒力,可作为西花蓟马生防制剂开发的潜力菌株。
关键词: 西花蓟马;虫生真菌;球孢白僵菌;黄绿绿僵菌;玫烟色棒束孢;毒力测定;生物防治
中图分类号: S433.89 文献标志码: A 文章编号:2095-1191(2019)08-1735-07
Virulence of three hyphomycetes entomopathogenic fungi against the adult of Frankliniella occidentalis(Pergande)
GE Wen-chao1, LUO Wen-cai1, CHEN Bin1*, ZHANG Hong-rui1, GU Xing-hui2,
ZHANG Li-meng2*
(1College of Plant protection,Yunnan Agricultural University,Kunming 650201, China; 2Yuxi Branch,
Yunnan Tobacco Company, Yuxi, Yunnan 653000, China)
Abstract:【Objective】The virulence of three hyphomycetes entomopathogenic fungi against the adult western flower thrips, Frankliniella occidentalis(Pergande) was studied to provide basic information for the selecting of high virulent entomopathogenic fungi and biological control for the adult F. occidentalis. 【Method】Immersion method was used to test the virulence of three entomopathogenic fungi(Beauveria bassiana, Metarhizium flavoviride and Isaria fumosorosea) against the F. occidentalis adults under laboratory condition, and based on the fourteen isolates tested, three high infective and lethal rates strains(B. bassiana WSWL21836, M. flavoviride WSWL51721, I. fumosorosea WSWL21837) were selected against the F. occidentalis adults at different concentrations(1.0×104, 1.0×105, 1.0×106, 1.0×107 and 1.0×108 spore/mL). 【Result】After 10 d of F. occidentalis adults were inoculated with 1.0×107 spore/mL of B. bassiana strains(WSWM81832, WSWL21831,WSWM1018315,WSWH21833 and WSWL21836), M. flavoviride strains(HLT17103, NGS21751, YKZ51712 and WSWL51721) and I. fumosorosea strains(WSWH31836, WSWL51831, WTS101822, NGS118310 and WSWL21837),the cumulative corrected mortality rates of F. occidentalis adults were 68.45%-75.60%,67.35%-82.65%,and 61.45%-70.67%, respectively. The virulence of B. bassiana WSWL21836, M. flavoviride WSWL51721 and I. fumoso-rosea WSWL21837 to F. occidentalis adults were inoculated with spore suspension at the concentration of 1.0×104 to 1.0×108 spores/mL. On the 10th day, the cumulative corrected mortality rates of F. occidentalis adults were 56.67%-82.33%,56.67%-89.67% and 48.33%-76.67%, respectively. The virulence regression equations of each strain were Y=3.2543+0.3332X(r=0.9167),Y=3.5878+0.2874X(r=0.9656) and Y=3.8188+0.2082X(r=0.9925), respectively, and the median lethal concentrations(LC50) were 2.63×104,4.17×04 and 7.85×105 spores/mL,the median lethal time(LT50) of infected F. occidentalis adults were 5.67,4.91 and 6.12 d with the concentration of 1.0×108 spores/mL, respectively. 【Conclusion】The strains M. flavoviride WSWL51721 and B. bassiana WSWL21836 have strong virulence to F. occidentalis adults, and can be used as a biological control agent in an integrated pest management program.
Key words: Frankliniella occidentalis(Pergande); entomopathogenic fungi; Beauveria bassiana; Metarhizium flavoviride; Isaria fumosorosea; virulence detection; biological control
0 引言
【研究意义】西花蓟马[Frankliniella occidentalis(Pergande)]是一种危害严重的外来入侵性、世界性农林害虫,由于其特殊的生物学和行为学特性,极易对杀虫剂产生抗药性(吴青君等,2005;Gao et al.,2012;Wu et al.,2015,2018)。目前,西花蓟马已对有机氯、有机磷、拟除虫菊酯、氨基甲酸酯和多杀菌素类等杀虫剂产生了不同程度的抗药性(Espinosa et al.,2002;Bielza et al.,2007;Cloyd,2016;Li et al.,2016;Wang et al.,2016),在田间应用化学农药防治时难以获得理想的效果。因此,寻找能保护生态环境和持续有效控制其种群的生物防治措施成为西花蓟马综合防治的重要途径。【前人研究进展】虫生真菌因其生态分布广、寄主种类多、在自然条件下发生流行能力强而在国内外害虫生物防治研究和应用中倍受关注(Wang and Feng,2014;李增智,2015)。球孢白僵菌(Beauveria bassiana)、黄绿绿僵菌(Metarhizium flavoviride)和玫烟色棒束孢(Isaria fumosorosea)等丝孢类昆虫病原真菌在害虫生物防治中发挥着越来越重要的作用,已被开发成多种制剂产品应用于农林害虫的防治(Wraight et al.,2001,2016),如球孢白僵菌(Botani Gard®,Mycotrol®,Beauverin®)、金龟子绿僵菌(Met52®,Bio-Catch-M®,Green Muscle®)、黄绿绿僵菌(Biogreen®)和玫烟色棒束孢(Preferal®,Priority®)等多种真菌类生物农药产品(葛文超等,2018)。目前,球孢白僵菌不同菌株对西花蓟马的毒力已有研究报道。陈斌等(2012)采用孢子悬浮液喷雾处理法测定了8株球孢白僵菌对西花蓟马成虫的毒力,筛选出4株高致病力球孢白僵菌菌株BbKM030716、BbJS080625、BbQJ031121和BbXW060615,对西花蓟马成虫喷雾接种10 d后其累积校正死亡率均在96%以上,致死中时间(LT50)均低于4 d;李银平等(2013)采用浸渍生测法生物测定了33株球孢白僵菌对西花蓟马成虫的毒力,筛选出4株高致病力球孢白僵菌菌株N-5、SZ-26、SZ-22和SZ-15,LT50均低于5 d,累积校正死亡率均在90%以上;李娟等(2015)通过浸渍生测法测定了191株不同地理来源的球孢白僵菌对西花蓟马成虫的毒力,筛选出61株高致病力菌株,LT50均在4 d以下,接种处理后第10 d时其累积校正死亡率均在90%以上。此外,Vestergaard等(1995)采用浸渍法生物测定了275株金龟子绿僵菌对西花蓟马成虫的毒力,发现在接种7 d后对西花蓟马成虫的致死率在94%以上,LT50为3 d,表明金龟子绿僵菌对西花蓟马有较强的致病性。【本研究切入点】综合以上研究,不同学者筛选出的高毒力球孢白僵菌菌株和金龟子绿僵菌菌株对西花蓟马的毒力间存在明显差异,因此,开展不同种类昆虫病原真菌对西花蓟马的毒力比较研究,以筛选出更高毒力的致病菌株十分必要。目前,关于西花蓟马高毒力菌株的筛选主要集中于球孢白僵菌,对其他虫生真菌,如黄绿绿僵菌和玫烟色棒束孢等对西花蓟马成虫的致病力尚无系统研究报道。【拟解决的关键问题】进行3种丝孢虫生真菌(球孢白僵菌、黄绿绿僵菌和玫烟色棒束孢)对西花蓟马成虫的室内毒力测定,通过比较3种云南本地昆虫病原真菌对西花蓟马成虫的致病力差异,筛选出对西花薊马具有高毒力的菌株,为防治该虫的生物制剂研究提供菌种资源。
1 材料与方法
1. 1 试验材料
1. 1. 1 供试虫体 以室内用灭菌组培瓶在其内放入新鲜的四季豆(Phaseolus vulgaris L.)豆荚饲养繁殖10代的西花蓟马为试验种群。所用四季豆豆荚购自当地农贸市场。将采集的西花蓟马用吸虫器收集后放入装有新鲜四季豆豆荚的组培瓶内,将组培瓶放在光照培养箱中于(25±1)℃、光照周期14L∶10D的条件下饲养繁殖,期间不断添加新采集的西花蓟马以建立和扩大其种群。生物测定时选用大小一致、初羽化健康的西花蓟马成虫。
1. 1. 2 供试菌株 选用采自云南西双版纳自然保护区,在室内分离保存的球孢白僵菌(B. bassiana)、黄绿绿僵菌(M. flavoviride)和玫烟色棒束孢(I. fumosorosea)3类虫生真菌。各菌株信息见表1。
1. 2 孢子悬浮液的配制
采用萨氏培养基(SDAY),在25 ℃下于气候箱内培养7 d,待产生大量孢子后,挑取培养基表面新鲜的孢子粉,用0.05%吐温-80无菌溶液作为湿润剂洗脱其固体培养基上的分生孢子,过滤除去菌丝和杂质,以200 r/min于恒温培养箱(上海知楚仪器有限公司,ZQLY-180F)中振荡培养15 min。用血球计数器测定悬浮液中孢子数,计算其孢子浓度,再用0.05%吐温-80无菌溶液逐步稀释获得供试孢子浓度的孢子悬浮液(李银平等,2013)备用。
1. 3 毒力测定
1. 3. 1 3种虫生真菌对西花蓟马成虫的侵染致死率 配制1.0×107孢子/mL的孢子悬浮液,以0.05%吐温-80溶液为空白对照,采用浸渍法接种(李银平等,2013;李娟等,2015)。将供试西花蓟马成虫在配制好的不同浓度孢子悬浮液中浸渍5 s后取出放于经灭菌处理的滤纸上,除去虫体表面多余的孢悬液,再用软小毛笔刷将接种后的成虫虫体挑入已放入2根四季豆(长10 cm,直径3 cm)经灭菌的玻璃养虫管中,用200目纱网、吸水纸和橡皮筋封口,以防止试验过程中西花蓟马逃逸,每处理投放20头西花蓟马成虫,处理后在温度(26±1)℃,相对湿度(80±5)%,光周期14L∶10D的恒温气候箱(广州康恒仪器有限公司,RG-300)中连续饲养观察10 d,每天定时观察和记录死亡情况,及时挑出死亡虫体并置于灭菌培养皿中保湿培养,3~5 d后镜检死虫,观察是否产生球孢白僵菌、黄绿绿僵菌和玫烟色棒束孢菌丝或孢子以确定是否为有效感染死亡。处理期间,每2 d更换一次新鲜四季豆。试验重复3次。
1. 3. 2 高毒力菌株对西花蓟马成虫的毒力测定 从1.3.1结果中选择3种西花蓟马昆虫病原真菌中相对致病力较好的高毒力菌株各1株作为供试菌株。毒力测定方法同1.3.1,用0.05%吐温-80无菌溶液配制成5个不同浓度梯度的分生孢子悬浮液(浓度梯度分别为1.0×104、1.0×105、1.0×106、1.0×107和1.0×108孢子/mL),以0.05%吐温-80溶液为对照。将死亡虫体在培养皿内保湿培养,待长出菌丝后进行鉴定,以确定有效侵染个体数。
1. 4 统计分析
试验数据采用DPS软件进行统计分析(唐启义和冯明光,2002),采用Duncan’s新复极差法(DMRT)进行不同处理间的差异性分析,采用机率值分析法计算供试菌株对西花蓟马成虫的毒力回归方程。
2 结果与分析
2. 1 3种丝孢虫生真菌对西花蓟马成虫的侵染致死效果
由图1可知,分别用5株球孢白僵菌(WSWM81 832、WSWM1018315、WSWH21833、WSWL21831、WSWL21836)、4株黄绿绿僵菌(NGS21751、YKZ 51712、HLT17103、WSWL51721)和5株玫烟色棒束孢(WTS101822、WSWL51831、WSWH31836、WSWL 21837、NGS118310)在1.0×107孢子/mL悬浮液接种处理西花蓟马成虫后,第10 d的西花蓟马成虫累积校正死亡率分别为68.45%~75.60%、67.35%~82.65%和61.45%~70.67%。综合比较3种昆虫病原真菌不同菌株对西花蓟马成虫的侵染致病率,发现球孢白僵菌菌株WSWL21836、黄绿绿僵菌菌株WSWL51721和玫烟色棒束孢菌株WSWL21837对西花蓟马成虫的侵染致病作用较强,累积校正死亡率分别为75.60%、82.65%和70.67%,均大于70.00%,因此,选取球孢白僵菌菌株WSWL21836、黄绿绿僵菌菌株WSWL51721和玫烟色棒束孢菌株WSWL21837进行后续的毒力测定。
2. 2 高毒力菌株对西花蓟马成虫的毒力测定结果
2. 2. 1 高毒力菌株对西花蓟马成虫的校正死亡率 测定高毒力菌株WSWL21836、WSWL51721和WSWL21837对西花蓟马成虫的侵染致病效果。分别用1.0×104、1.0×105、1.0×106、1.0×107和1.0×108孢子/mL的孢子悬浮液接种西蓟马成虫,第1 d即有西花蓟马成虫死亡,随着时间的推移,西花蓟马成虫的累积校正死亡率逐渐增加;接种后第3 d时,不同浓度WSWL21836、WSWL51721和WSWL21837对西花蓟马成虫的累计校正死亡率分别为11.67%~28.33%、15.00%~30.00%和12.33%~30.00%,三者间无明显差异(F=0.43,P>0.05);从接种后第5 d开始,WSWL51721对西花蓟马成虫的侵染致死率高于WSWL21836和WSWL21837;到接种后第10 d时,不同浓度WSWL21836、WSWL51721和WSWL21837对西花蓟马成虫的累积校正死亡率分别56.67%~82.33%、56.67%~89.67%和48.33%~76.67%,接种WSWL51721后西花蓟马成虫的累积校正死亡率显著高于接种WSWL21836(F=12.65,P<0.05)和WSWL21837(F=16.37,P<0.05)的处理,且接种WSWL21836和WSWL51721后西花薊马成虫的累积校正死亡率较高,在1.0×108孢子/mL接种浓度下西花蓟马成虫的累积死亡率均在80.00%以上,而接种WSWL21837后西花蓟马成虫的累积校正死亡率为76.67%(图2)。表明WSWL21836和WSWL51721对西花蓟马成虫具有较强的侵染致死作用。
2. 2. 2 高毒力菌株对西花蓟马成虫的侵染致病效应
2. 2. 2. 1 毒力回归方程 WSWL21836、WSWL 51721和WSWL21837对西花蓟马成虫均具有较强的致病力,3种虫生真菌对西花蓟马成虫侵染致病的回归方程见表2。经卡方检验WSWL21836、WSWL 51721和WSWL21837的卡方值(χ2)分别为4.4497、1.3656和0.1568,均小于χ2分布表中P=0.05、df =3时的χ2(7.82),表明各回归方程式均符合具体实际。
2. 2. 2. 2 致死剂量 由表2可知,WSWL21836、WSWL51721和WSWL21837对西花蓟马成虫的致死中浓度(LC50)分别为2.63×104、4.17×104和7.85×105孢子/mL,WSWL51721对西花蓟马成虫的LC50小于WSWL21836和WSWL21837,表明WSWL51721对西花蓟马成虫具有较高的毒力。
2. 2. 2. 3 致死时间 试验结果显示,西花蓟马成虫在1.0×104、1.0×105、1.0×106、1.0×107和1.0×08孢子/mL浓度下接种处理后第1 d开始死亡,在低浓度(1.0×106孢子/mL)下,WSWL21836、WSWL51721和WSWL 21837对西花蓟马成虫侵染致病的LT50无显著差异(P>0.05,下同);随着接种浓度的增加,WSWL21836、WSWL51721和WSWL21837对西花蓟马成虫的LT50逐渐降低,在1.0×106~1.0×108孢子/mL浓度下,3株菌株对西花蓟马成虫的LT50分别为5.67~8.52、4.91~7.26和6.12~8.66 d(表3),3株菌株间的LT50亦无显著差异。WSWL51721对西花蓟马成虫的LT50小于WSWL21836和WSWL21837,表明WSWL51721对西花蓟马成虫的侵染致死速率较快。
3 讨论
不同地理来源及寄主来源的昆虫病原真菌菌株对不同种类害虫的毒力不同。本研究发现以1.0×108孢子/mL球孢白僵菌菌株WSWL21836侵染西花蓟马成虫后第10 d的累积校正死亡率为82.33%,与其他寄主来源的球孢白僵菌菌株对西花蓟马成虫的毒力间存在一定差异。袁盛勇等(2011)发现球孢白僵菌菌株MZ050724对西花蓟马成虫的累积校正死亡率可达93.13%,与本研究结果存在差异的原因可能是供试菌株的寄主来源不同,袁盛勇等(2011)所用球孢白僵菌菌株MZ050724的寄主为鳞翅目夜蛾科银纹夜蛾幼虫,而本研究中采用的球孢白僵菌菌株WSWL21836的寄主为半翅目扁蝽科昆虫。本研究发现西花蓟马成虫在接种浓度为1.0×108孢子/mL的玫烟色棒束孢菌株WSWL21837后第10 d的累积校正死亡率为76.67%,而Ansari等(2008)研究发现,玫烟色棒束孢菌株CLO55和P34在孢子悬浮液浓度为1.0×1010孢子/mL接种西花蓟马若虫后第11 d时,西花蓟马若虫的累积校正死亡率为63%~75%,但要系统评价玫烟色棒束孢菌株WSWL21837对西花蓟马的生防潜力,还有必要进一步研究证明其对西花蓟马若虫的毒力。
有关绿僵菌对西花蓟马的毒力研究主要为金龟子绿僵菌(Vestergaard et al.,1995;Ansari et al.,2008;Wraight et al.,2016)和棕色綠僵菌(Metarhizium brunneum)(Wraight et al.,2016),而对于黄绿绿僵菌对西花蓟马的毒力研究尚未见报道。本研究发现黄绿绿僵菌菌株WSWL51721对西花蓟马成虫具有较强的侵染致病性,为生防西花蓟马筛选虫生真菌菌株提供了依据。WSWL51721在浓度为1.0×108孢子/mL接种西花蓟马成虫第10 d时,西花蓟马成虫的累积校正死亡率为89.67%,低于Ansari等(2008)对金龟子绿僵菌菌株V275和ERL700接种西花蓟马若虫后11 d时西花蓟马若虫累积校正死亡率85%~90%和91%~96%,造成该差异的原因可能是绿僵菌种类不同、菌株的寄主不同,也有可能与供试西花蓟马的虫态不同有关。
本研究较系统分析了采自云南西双版纳自然保护区的3种丝孢类虫生真菌对西花蓟马成虫的毒力,其中球孢白僵菌菌株WSWL21836和黄绿绿僵菌菌株WSWL51721对西花蓟马成虫具有较强的侵染致病力,但该结果仅反映了对西花蓟马成虫的侵染致病作用,而对于西花蓟马若虫的侵染致病情况是否相同还有待进一步探究,进而为优良菌种资源的筛选和西花蓟马的生物防治提供理论依据。
有关虫生真菌中球孢白僵菌(陈斌等,2012;李银平等,2013;李娟等,2015;Wu et al.,2015,2016)、金龟子绿僵菌(Vestergaard et al.,1995;Wraight et al.,2016)、棕色绿僵菌(Metarhizium brunneum)(Wraight et al.,2016)和蜡蚧轮枝菌(Vestergaard et al.,1995;Wraight et al.,2016)等对西花蓟马的毒力均已有研究报道,本研究发现黄绿绿僵菌对西花蓟马成虫具有较强的毒力,将丰富西花蓟马生防菌资源。
4 结论
黄绿绿僵菌菌株WSWL51721和球孢白僵菌菌株WSWL21836对西花蓟马成虫具有较强的室内毒力,可作为西花蓟马生防制剂开发的潜力菌株。
参考文献:
陈斌,张琦,桂富荣,何永红,刘云龙,李正跃,肖关丽. 2012. 球孢白僵菌不同分离株对西花蓟马的毒力测定[J]. 生物安全学报,21(1): 14-19. [Chen B,Zhang Q,Gui F R,He Y H,Liu Y L,Li Z Y,Xiao G L. 2012. Virulence of isolates of the insect pathogen Beauveria bassiana against the Western flower thrips,Frankliniella occidentals[J]. Journal of Biosafety,21(1): 14-19.]
葛文超,杜广祖,赵永鑫,张凌英,户艳霞,孙军伟,陈斌. 2018. 西花蓟马高毒力虫生真菌筛选及其生防应用潜力的研究进展[J]. 生物安全学报,27(4): 240-248. [Ge W C,Du G Z,Zhao Y X,Zhang L Y,Hu Y X,Sun J W,Chen B. 2018. Searching for highly virulent entomopathogenic fungi of the western flower thrips,Franklinie-lla occidentalis(Pergande) and their potential applications in biocontrol[J]. Journal of Biosafety,27(4): 240-248.]
李娟,吴圣勇,王晓青,王帅宇,雷仲仁. 2015. 防治西花蓟马的球孢白僵菌菌株筛选及耐热性测定[J]. 中国生物防治学报,31(6): 845-852. [Li J,Wu S Y,Wang X Q,Wang S Y,Lei Z R. 2015. Screening of Beauveria ba-ssiana strains against frankliniella occidentalis and their conidial thermotolerance[J]. Chinese Journal of Biological Control,31(6): 845-852.]
李银平,雷仲仁,王海鸿. 2013. 对西花蓟马高效的球孢白僵菌菌株筛选及产孢特性研究[J]. 中国生物防治学报,29(2): 219-226. [Li Y P,Lei Z R,Wang H H. 2013. Selection of Beauveria bassiana strains against Frankliniella occidentalis and their conidial production characteristics[J]. Chinese Journal of Biological Control,29(2): 219-226.]
李增智. 2015. 我国利用真菌防治害虫的历史、进展及现状[J]. 中国生物防治学报,31(5): 699-711. [Li Z Z. 2015.History,progress and current status of the application of fungi against pest insects in China[J]. Chinese Journal of Biological Control,31(5): 699-711.]
唐启义,冯明光. 2002. 实用统计分析及其DPS数据处理系统[M]. 北京: 科学出版社. [Tang Q Y,Feng M G. 2002. DPS data processing system for practical statistics[M]. Beijing: Science Press.]
吳青君,张友军,徐宝云,朱国仁. 2005. 入侵害虫西花蓟马的生物学、危害及防治技术[J]. 昆虫知识,42(1): 11-14. [Wu Q J,Zhang Y J,Xu B Y,Zhu G R. 2005. The biological character,damage and management of an invasive insect pest,Frankliniella occidentalis[J]. Chinese Bulletin of Entomology,42(1): 11-14.]
袁盛勇,孔琼,张宏瑞,王平,孙士卿,李正跃,肖春. 2011. 球孢白僵菌对西花蓟马成虫和若虫的毒力研究[J]. 西南大学学报(自然科学版),33(6): 54-57. [Yuan S Y,Kong Q,Zhang H R,Wang P,Sun S Q,Li Z Y,Xiao C. 2011. Study on the virulence of Beauveryia bassiana against adult and nymph of Frankliniella occidentalis(Pergande)[J]. Journal of Southwest University(Natural Science Edition),33(6): 54-57.]
Ansari M A,Brownbridge M,Shah F A,Butt T M. 2008. Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrips,Frankliniella occidentalis,in plant-growing media[J]. Entomologia Experimentalis et Applicata,127(2): 80-87.
Bielza P,Quinto V,Contreras J,Torné M,Martín A,Espinosa P J. 2007. Resistance to spinosad in the western flower thrips,Frankliniella occidentalis(Pergande),in greenhou-ses of south-eastern Spain[J]. Pest Management Science,63(7): 682-687.
Cloyd R A. 2016. Western flower Thrips(Thysanoptera: Thri-pidae) and insecticide resistance: An overview and strategies to mitigate insecticide resistance development[J]. Journal of Entomological Science,51(4):257-273.
Espinosa P J,Bielza P,Contreras J,Lacasa A. 2002. Insecticide resistance in field populations of Frankliniella occidentalis(Pergande) in Murcia(south-east Spain)[J]. Pest Management Science,58(9): 967-971.
Gao Y L,Lei Z R,Reitz S R. 2012. Western flower thrips resistance to insecticides: Detection,mechanisms and mana-gement strategies[J]. Pest Management Science,68(8):1111-1121.
Li D G,Shang X Y,Reitz S R,Nauen R,Lei Z R,Lee S H,Gao Y L. 2016. Field resistance to spinosad in western flower thrips Frankliniella occidentalis(Thysanoptera: Thripidae)[J]. Journal of Integrative Agriculture,15(12):2803-2808.
Vestergaard S,Gillespie A T,Butt T M,Schreiter G,Eilenberg J. 1995. Pathogenicity of the hyphomycete fungi Verticillium lecanii and Metarhizium anisopliae to the western flower thrips,Frankliniella occidentalis[J]. Biocontrol Science and Technology,5(2): 185-192.
Wang C,Feng M. 2014. Advances in fundamental and app-lied studies in China of fungal biocontrol agents for use against arthropod pests[J]. Biological Control,68: 129-135.
Wang Z H,Gong Y J,Jin G H,Li B Y,Chen J C,Kang Z J,Zhu L,Gao,Y L,Reitz S R,Wei S J. 2016. Field-evolved resistance to insecticides in the invasive western flower thrips Frankliniella occidentalis(Pergande)(Thysanoptera: Thripidae) in China[J]. Pest Management Science,72(7):1440-1444.
Wraight S P,Jackson M A,Kock De S L. 2001. Production,stabilization and formulation of fungal biological agents[M]//Butt T M,Jackson C,Magan N. Fungi as biocontrol agents. Wallingford: CABI Publishing:253-287.
Wraight S P,Ugine T A,Ramos M E,Sanderson J P. 2016. Efficacy of spray applications of entomopathogenic fungi against western flower thrips infesting greenhouse impatients under variable moisture conditions[J]. Biological Control,97: 31-47.
Wu S Y,Gao Y L,Smagghe G,Xu X N,Lei Z R. 2016. Inte-ractions between the entomopathogenic fungus Beauveria bassiana and the predatory mite Neoseiulus barkeri and biological control of their shared prey/host Frankliniella occidentalis[J]. Biological Control,98: 43-51.
Wu S Y,Gao Y L,Xu X N,Goettel M S,Lei Z R. 2015. Compatibility of Beauveria bassiana with Neoseiulus bar-keri for control of Frankliniella occidentalis[J]. Journal of Integrative Agriculture,14(1): 98-105.
Wu S Y,Tang L D,Zhang X R,Xing Z L,Lei Z R,Gao Y L. 2018. A decade of a thrips invasion in China: Lessons learned[J]. Ecotoxicology,27(7):1032-1038.
(責任编辑 麻小燕)