孟德智 王钰炜 王明军 秦启波 俞晖
摘 要: 针对快速时变信道,提出了一种基于复指数基扩展模型(CE-BEM)的线性最小均方误差(LMMSE)信道估计方法,对信道估计的结果使用离散长椭球序列(DPSS)进行平滑处理,并相应提出了基于迭代的载波间干扰(ICI)消除信道均衡方法.仿真结果表明:在高多普勒信道场景下,该方法系统误码性能较传统信道估计方法有一定程度的提升.
关键词: 信道估计; 基扩展模型; 快速时变信道; 载波间干扰(ICI)消除
中图分类号: TN 929.5文献标志码: A文章编号: 1000-5137(2019)01-0064-06
Abstract: In the fast time-varying channel scenario,a linear minimum mean square error (LMMSE) channel estimation method based on complex exponential basis extension model (CE-BEM) was proposed,and the channel estimation results were smoothed by use of discrete prolate spheroidal sequence (DPSS).Meanwhile,a channel equalization method based on iterative inter-carrier interference (ICI) cancellation was proposed.The simulation results showed that the proposed method had a better system error performance than traditional estimation method in the high Doppler channel scenario.
Key words: channel estimation; base extended model; fast time-varying channel; inter-carrier interference (ICI) cancellation
0 引 言
高速移动环境中,无线信道表现出频率及时间的选择性衰落,传统的信道模型不能很好地对高速时变的信道进行模拟,由此,基扩展模型(BEM)[1-2]得到广泛的应用.
文献[3-5]中,作者提出了基于导频的BEM信道估计方法.MA等[3]时域中插入导频,解决符号间干扰(ISI)的问题.KANNU等[4]在时域中插入导频,解决载波间干扰(ICI)的问题.STAMOULIS等[5]作者在文献[4]的基础上,研究得出ICI大多发生在相邻的子载波,導致信道矩阵可近似地被认为是带状的,并相应地给出了信道均衡的迭代算法,降低了运算复杂度.
本文作者基于复指数(CE)[1]函数,提出了一种在频域中插入导频簇的信道估计方法,并采用离散长椭球序列(DPSS)[6]对信道估计出的结果进行平滑处理.仿真结果表明:在高多普勒的信道场景下,附加DPSS平滑处理的信道估计方法优于复指数基扩展模型(CE-BEM).
1 系统和信道模型
1.1 OFDM系统模型
4 结 论
本文作者提出了采用DPSS平滑处理的CE-BEM信道估计方法,相应给出了基于迭代的ICI消除的信道均衡算法,并在高速移动信道下进行仿真实验.结果表明:相比传统LS和MMSE算法,以及CE-BEM方法,带有PPSS平滑处理的CE-BEM的信道估计方法具备更为精确的估计精度.
参考文献:
[1] TANG Z,CANNIZZARO R C,LEUS G,et al.Pilot-assisted time-varying channel estimation for OFDM systems [J].IEEE Transactions on Signal Processing,2007,55(5):2226-2238.
[2] TANG Z,LEUS G,BANELLI P.Pilot-assisted time-varying OFDM channel estimation based on multiple OFDM symbols [C]//Signal Processing Advances in Wireless Communications.Canne:IEEE,2006:1-5.
[3] MA X,GIANNAKIS G B,OHNO S.Optimal training for block transmissions over doubly selective wireless fading channels [J].IEEE Transactions on Signal Processing,2003,51(5):1351-1366.
[4] KANNU A R,SCHNITER P.MSE-optimal training for linear time-varying channels [C]//IEEE International Conference on Acoustics Speech and Signal Processing.Philadelphia:IEEE,2005:789-792.
[5] STAMOULIS A,DIGGAVI S N,AL-DHAHIR N.Intercarrier interference in MIMO OFDM [J].IEEE Transactions on Signal Processing,2002,50(10):2451-2464.
[6] CHENG P,CHEN Z,RUI Y,et al.Channel estimation for OFDM systems over doubly selective channels:a distributed compressive sensing based approach [J].IEEE Transactions on Communications,2013,61(10):4173-4185.
[7] 任大孟.快速时变信道下无线 OFDM 系统信道估计技术的研究 [D].哈尔滨:哈尔滨工程大学,2009.
REN D M.Research on channel estimation techniques of wireless OFDM systems in fast time-varying channel [D].Harbin:Harbin Engineering University,2009.
[8] ZEMEN T,MECKLENBRAUKER C F.Time-variant channel estimation using discrete prolate spheroidal sequences [J].IEEE Transactions on Signal Processing,2005,53(9):3597-3607.
[9] International Telecommunication Union.Guidelines for evaluation of radio transmission technologies for IMT-2000 [R].Geneva:ITU,1997.
(责任编辑:冯珍珍,包震宇)