林园 高瑾
摘要:本文讨论Lotka-Volterra竞争系统连接边界平衡点和正平衡点行波解的存在性。通过变量代换将边界平衡点转化为零点,再利用上下解结合不动点定理得到了当c>c*时行波解的存在性。本文的结果丰富了对Lotka-Volterra竞争系统认识。
关键词:Lotka-Volterra竞争系统;行波解;上下解;边界平衡点
中图分类号:G712 文献标志码:B 文章编号:1674-9324(2019)27-0095-04
1.引言
Lotka-Volterra反应扩散系统是种群动力学的一个重要的模型,描述的是多种群相互影响共同生存的生态模型,有捕食型、竞争型和合作型等几种类型。行波解的存在性是反应扩散系统研究的一个重要领域。关于反应扩散方程行波解己有丰富的研究,具体参考[1,2,3,5,4]以及其中引用的文献。
本文我们关注Lotka-Volterra竞争反应扩散系统。近年来关于竞争系统行波解的研究大多都是连接零平衡点到正平衡点的[6,7,8],据我们所知,极少涉及边界平衡点的。
参考文献:
[1]J.D.Murray,Mathematical Biology:I.An Introduction,Springer-Verlag,New York,2002.
[2]J.D.Mathematical Biology.II Spatial Models and Biomedical Applications,Springer-Verlag,New York,2003.
[3]A.I.Volpert,V.A.Volpert,V.A.Volpert,Traveling Wave Solutions of Parabolic Systems,American Mathematical Society,Providence,Rhode Island,2000.
[4]X.Liang,X.Q.Zhao,Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,Comm.Pure Appl.Math.60(1)(2007)1-40.
[5]葉其孝,李正元.反应扩散方程引论[M].北京:科学出版社,2006.
[6]W.T.Li,G.Lin,S.G.Ruan,Existence of travelling wave solutions in delayed reac-tion-diffusion systems with applications to diffusion-competition systems,Nonlin-earity 19(2006)1253-1273.
[7]K.Li,X.Li,Travelling wave solutions in diffusive and competition-cooperation systems with delays,Ima Journal of Applied Mathematics 74(4)(2009)248-291.
[8]S.A.Gourley,S.G.Ruan,Convergence and travelling fronts in functional differential equations with nonlocal terms A competition model,Siam J.Math.Anal.35(3)(2014)806-822.
[9]Y.Lin,Q.R.Wang,K.Zhou,Traveling wave solutions in n-dimensional delayed reaction-diffusion systems with mixed monotonicity,J.Comput.Appl.Math.243(2013)16-27.
[10]K.Zhou,Y.Lin,Q.R.Wang,Existence and asymptotics of traveling wave fronts for a delayed nonlocal diffusion model with a quiescent stage,Commun.Nonlinear Sci.Numer.Simul.18(2013)3006-3013.
[11]H.F.Weinberger,M.A.Lewis,B.T.Li,Analysis of linear determinacy for spread in cooperative models,J.Math.Biol.45,(2002)183-218.