高考题怎么改编(五)

2019-06-28 13:28苏玖
新高考·高二数学 2019年1期
关键词:分点中线定值

苏玖

真题展现

(2018全国卷I第6题)在△ABC中,AD为BC边上的中线,E为AD的中点,则EB =( )

A.3/4AB-1/4AC

B.1/4AB-3/4AC

C.3/4+1/4AC

D.1/4AB+3/4AC

思维延伸

本题主要是两次使用三角形中线对应的向量,其实就是两个向量的加法运算的几何意义.如果点E不是中点,而是三等分点、四等分点等等,可以改编为:

(改编1)在△ABC中,E为BC边上中线AD上的点,AE=2ED,BE=xAB十yAC,求x十y的值.

拓展:在△ABC中,E为BC边上中线AD上的点,AE=xED,BE=xAB+yAC,求x+y的值.

如果把“BE”改为“过E点任作直线”,就改编为:

(改编2)在△ABC中,E为BC边上中线AD上的点,AE=λED(λ为定值),过点E作直线分别交边AB和边AC于点M和点N,AB=xAM,AC=yAN,求证:x+y为定值.

如果改变图形的形状,由“三角形”改编为“平行四边形”“梯形”等等,如:

(改编3)在平行四边形ABCD中,AP=λAC(0<λ<1),过点P作直线分别交AB,CD所在直线于点M,N,AM=xAB,AN=yAD,求证:1/x+1/y为定值.

当然也可以在三角形的一条边上插多个等分点,研究一系列的向量之和与数量积,于是有:

(改编4)

如果三角形与圆整合,又可以有:

(改编5)

如果点O不是三角形外接圆的圆心,而是三角形内任意--点,于是又可以为:

(改编6)

点拨解析

原题解析:抓住D为BC边上的中点,E为中线AD的中点,于是有

改编1解析:

拓展解析:

改编2解析:

改编3解析:

改编4解析:(1)证明:因为点P1,P2,P3,…,Pn是边AB上的n个等分点,所以

改编5解析:【解法一】取AB中点D,所以

【解法二】

解法二运算量较大.而解法一就是充分利用向量的几何特征,简洁明快,一目了然.

改编6解析:

回顾悟道

从上述各题的改编过程中可以看出,抓住平面向量的线性运算的几何意义,进行改编高考题或教材上的题目,是命题者常用的方法.改编途径:一是改编一个点的位置比例;二是定点改为动点,常数改为字母参数;三是改变平面图形的形状和特征,如三角形改为平行四边形、矩形、梯形、菱形等;四是三角形与外接圆或内切圆组合等等.

小试牛刀

題目:已知A,B,C为圆0上的三点,若AO=1/2(AB+AC),则AB与AC的夹角为____.

提示1:将三角形特殊化,改为正三角形,则有:

(改编1)_______

提示2:将三角形改为等腰梯形,则有:

(改编2)_______

答案与解析

原题解析:

(改编1)

(改编2)

猜你喜欢
分点中线定值
来自低谷的你
定比分点之换底分点伸缩法
利用基本不等式破解最值问题
课本内外
例说几何定值的证明方法
五禽戏“动作节分点”划分与学练建议(三)
与圆锥曲线定值问题交交手
课本内外
两个有趣定值
直角三角形斜边上中线的性质及其应用