唐会会 许艳丽 王庆燕 马正波 李光彦 董 会 董志强
聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制
唐会会 许艳丽 王庆燕 马正波 李光彦 董 会 董志强*
中国农业科学院作物科学研究所/ 农业部作物生理生态与栽培重点开放实验室, 北京 100081
2016年和2017年在中国农业科学院作物科学研究所吉林公主岭试验站(43º29¢55¢¢N, 124º48¢43¢¢E), 以中单909为材料, 设置常规氮素(CN)和PASP螯合氮素(PASP-N)的不同施肥量全基施处理, 探讨东北春玉米PASP螯合氮素减量全基施的增效机制。结果表明, 相比CN, PASP-N在总施氮量减少1/3的条件下, 玉米增产0.9%~3.0%, 穗长增加0.5%~2.9%, 灌浆中期叶面积指数增大18.5%~22.3%, 秃尖长降低13.8%~46.7%, 株高及穗位高分别降低1.5%~2.5%和0.7%~8.4%。PASP-N处理下, 花期玉米功能叶硝酸还原酶(NR)活性降低1.4%~19.8%, 花后30 d穗位叶谷氨酰胺合成酶(GS)活性提高18.5%~33.1%, 花后20 d穗位叶谷草转氨酶(GOT)活性增高0.8%~6.4%。多项式曲线模拟结果表明, PASP-N和CN处理全基施最佳氮用量分别为185.3 kg hm–2和219.1 kg hm–2, PASP-N比CN少施氮肥33.8 kg hm–2, PASP-N产量比CN高108.9 kg hm–2。氮肥偏生产力、氮肥农学效率、氮肥表观利用率和氮肥生理效率分别比常规氮素处理增加51.3%~54.4%、2.9%~104.2%、28.9%~126.6%和48.0%~405.2%。因此, PASP螯合氮肥能促进东北春玉米籽粒灌浆中后期氮素代谢, 提高玉米氮肥利用效率。
PASP; 春玉米; 减氮; 氮肥利用率; 全基施
在保障国家粮食安全中, 化肥起着不可替代的作用, 对我国粮食单产增长的贡献率高达40%~ 50%[1]。但是, 大量的化肥投入在保障玉米高产稳产的同时, 也导致了严重的生态环境问题, 比如提高了耕地土壤、地下水与地表水体的富营养化程度, 加剧了农田面源污染[2]。我国玉米生产中, 基施部分氮肥和全部磷肥、钾肥, 配合拔节期和灌浆期追施氮肥, 是获得高产的惯用施肥方法。但在玉米生育中后期追施氮肥工作量较大, 实际可操作性差, 而将氮肥全基施又容易造成氮素大量流失, 引起玉米后期早衰减产。因此, 研究新型绿色适宜全基施的肥料对保障玉米高产稳产和简化玉米施肥技术具有重要意义。已有研究表明, 通过少量多次追施氮肥与多层施氮[3-13]、施用添加脲酶抑制剂和硝化抑制剂等助剂的缓控释肥料[14-23], 可有效提高作物氮素利用率, 但由于生产成本高、环境适应性差和环境污染等问题, 在推广应用中存在一定局限性。聚天门冬氨酸(polyaspartic acid, PASP)是天然存在于软体及蜗牛类壳内的一种氨基酸聚合物, 在环境中极易降解为二氧化碳和水[24]。PASP本身具有极强的鳌合、分散、吸附作用, 分子中的羟基和羧基, 能螯合金属离子, 富集N、P、K及微量元素供给植物, 提高作物对氮、磷、钾的利用率[25]。PASP能使尿素养分持效期延长[26]、改善土粒结构[27]、富集磷素[28]、能促进植株氮磷钾的吸收[29]、提高土壤全氮、速效磷和速效钾含量[30], 促进作物增产[28-29,31-32]。这些报道多以水培和盆栽试验研究PASP对作物生物量、产量和氮肥利用率的影响。以PASP螯合氮素减量全基施对作物氮素生理代谢的影响及其作用机制方面的研究较少。本研究基于大田试验, 设置不同施氮量处理, 研究氮肥全基施条件下PASP对春玉米氮素利用的调控效应, 以期揭示PASP对春玉米氮素利用的调控机制, 为建立东北春玉米减氮高效生产技术提供理论和技术依据。
中国农业科学院吉林省公主岭试验站(43º29¢55¢¢N, 124º48¢43¢¢E), 土壤为黑土, 耕层土壤(0~20 cm)含有机质26.7 g kg–1、全氮1.4 g kg–1、速效氮155.3 mg kg–1、速效磷34.4 mg kg–1、速效钾184.2 mg kg–1, pH 5.8。
以玉米(L.)杂交种中单909 (中国农业科学院作物科学研究所选育)为材料, 设置常规氮肥(CN)和聚天门冬氨酸螯合氮肥(PASP-N)两种氮肥的处理(表1)。CN为尿素, PASP-N为尿素混拌0.3%的聚天门冬氨酸; 均在春玉米播种前一次性基施。磷肥和钾肥施肥量分别为P2O575kg hm–2和 K2O 117 kg hm–2。采用随机区组设计, 3次重复, 小区长6.0 m, 宽4.8 m, 玉米留苗密度为75,000株hm–2, 60 cm等行距播种。田间除草、植保等管理同当地大田生产。2016年4月30日播种, 5月14日出苗, 9月29日收获; 2017年4月27日播种, 5月21日出苗, 9月27日收获。
1.3.1 产量及产量构成因素 玉米成熟后, 在小区中部选取10 m2测产称重, 选取20个平均穗调查穗部性状(穗长、秃尖长、穗粗、穗粒数和千粒重), 测定出籽率和含水率, 并折算产量(按14%含水量计)。
1.3.2 叶面积指数 在拔节(V6)、大口(V12)、开花吐丝期(VT)、花后15 d (VT+15)、花后30 d (VT+30)、花后45 d (VT+45)和收获期(R6)选取有代表性的植株3株, 测量每株的株高和穗位高(花期开始测量穗位)及每片叶的长度和宽度。采用长宽系数法(0.75)计算叶面积指数, 叶面积指数(LAI)=该土地面积上的总绿叶面积/土地面积。
表1 聚天门冬氨酸螯合氮肥(PASP-N)处理和常规氮肥(CN)处理的施氮量
1.3.3 地上部分干物质积累量 在开花吐丝期和收获期选取有代表性的植株3株, 按部位(叶片、叶鞘、茎秆、苞叶、籽粒、穗轴)分开, 于105℃杀青30 min后85℃烘干至恒重, 称量并粉碎以测定不同器官养分含量。
1.3.3 植株氮素含量及氮肥利用效率 利用VELP-UDK169型凯氏定氮仪测定植株不同部位氮素含量。按文献[33-34]计算如下参数。
氮积累量(kg hm–2) = 植株含氮量(%)×单株干重×小区密度
氮肥偏生产力(partial factor productivity from applied N, PFP, kg kg–1) = 施肥区玉米产量/施氮量
氮肥农学效率(agronomic efficiency of applied N, AE, kg kg–1) = (施肥区玉米产量-对照区玉米产量)/施氮量
氮肥表观利用率(recovery efficiency of applied N, N%) = (施氮区玉米地上部吸氮量-对照区玉米地上部吸氮量)/施氮量×100
氮肥生理利用率(physiological efficiency of applied N, PEN kg kg–1) = (施肥区玉米产量-未施肥区玉米产量)/(施肥区地上部的吸氮量-未施肥区地上部的吸氮量)
1.3.4 叶绿素相对含量(SPAD值) 在拔节期(V6)、大口期(V12)、开花期(VT)、花后10 d (VT+10)、花后20 d (VT+20)、花后30 d (VT+30)和花后40 d(VT+40)用日本美能达公司产手持式SPAD-502型叶绿素计测定穗位叶叶绿素相对含量(SPAD值)。
1.3.5 氮代谢相关酶活性测定 自开花期取至花后40 d, 每间隔10 d取一次穗位叶, 测定硝酸还原酶(NR), 谷氨酰胺合成酶(GS), 谷草转氨酶(GOT)和谷丙转氨酶(GPT)的活性。参考李合生[35]的磺胺比色法测定硝酸还原酶(NR)活性; 参照邹琦[36]的方法测定谷氨酰胺合成酶(GS)活性, 以540 nm处吸光度的上升值间接表示酶活性。参考吴良欢等[37]的方法测定谷草转氨酶(GOT)和谷丙转氨酶(GPT)活性。
采用Microsoft Excel 2007整理计算数据及作图, 用SAS 9.2统计分析, 以LSD (<0.05)检验平均数间差异显著性。
2.1.1 产量 如图1-A所示, 2016年CN和PASP- N处理玉米籽粒产量均随氮肥施用量的增加而降低, 除CN3处理外, CN和PASP-N处理籽粒产量显著高于对照处理(以下简称CK)。相比CK, PASP-N处理增产2.1%~12.1%, CN处理增产6.1%~8.6%; 相比CN处理, PASP-N1和PASP-N3处理在氮肥减施1/3时增产3.1%~3.2%。
如图1-B所示, 2017年产量变化趋势与2016年略有差异, 随肥料施用量的增加呈先增加后降低的趋势, 而CN和PASP-N处理均显著大于CK, 整体来看, PASP-N处理增产8.2%~15%, CN处理增产7.3%~12.5%。与CN相比, PASP-N处理在氮肥减施1/3时增产0.9%~3.0%。
图1 CN与PASP-N处理不同施肥量对玉米产量的影响
A: 2016年产量; B: 2017年产量。CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2。图中标以不同小写字母的柱值在0.05水平上差异显著。
A: yield in 2016; B: yield in 2017. CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2and 337.5 kg hm–2respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2, respectively. Value within a column yellowed by different letters are significantly different at< 0.05.
2.1.2 产量曲线拟合 CN和PASP-N施氮水平与玉米产量均呈二次曲线关系, 曲线方程分别为=-0.02672+11.698+10798 (2=0.51,<0.05)和=-0.4262+15.785+10726 (2=0.55,<0.0001)。两者分别在施氮量219.1 kg hm–2和185.3 kg hm–2时达到最高产量12,079.3 kg hm–2和12,188.2 kg hm–2, PASP-N比CN高108.9 kg hm–2, 且比CN少施氮肥33.8 kg hm–2; 2条曲线在点(238.0, 12,069.7)处交汇; 即CN和PASP-N施氮量介于0~238.0 kg hm–2时, 获得相同产量(图2)。
2.1.3 产量构成因素 如表2所示, 与CK比较, CN和PASP-N处理穗长增加2.7%~3.8%, 秃尖缩短7.6%~51.9%, 穗粗增加5.6%~8.3%, 穗粒数增加7.0%~10.9%; 相比CN, PASP-N处理穗长增加0.5%~2.9%, 秃尖长缩短13.8%~46.7%。
如表3所示, CN和PASP-N处理的地上部分干物质积累量显著大于对照(CK)。相比CK处理, CN和PASP-N处理花前干物质积累分别增加31.9%~44.6%和16.4%~25.9%, 花后干物质积累分别增加22.4%~101.9%和15.5%%~39.3%。PASP-N1和PASP- N2处理的花前干物质积累显著低于CN1和CN2, 而花后干物质积累与CN1和CN2差异不显著。PASP-N1和PASP-N3处理的收获指数比CN1、CN3高3.7%~6.0%, 但PASP-N2处理与CN2差异不显著。
图2 CN和PASP-N处理施氮量与玉米产量曲线拟合图
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥。
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP.
表2 CN与PASP-N不同施肥量对玉米产量构成因素的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2。标以不同小写字母的值0.05水平上差异显著。
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2, and 337.5 kg hm–2respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2, respectively. Value within a column yellowed by different letters are significantly different at< 0.05.
表3 CN与PASP-N处理不同施肥量对玉米干物质积累的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2。标以不同小写字母的值0.05水平上差异显著。
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2and 337.5 kg hm–2, respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2, respectively. Value within a column yellowed by different letters are significantly different at< 0.05.
2.3.1 叶面积指数(LAI) 如图3所示, CN和PASP-N处理的玉米叶面积指数(LAI)显著大于对照(CK), 在收获期, CN和PASP-N处理玉米群体叶面积指数分别比CK增加44.8%~246.7%和36.5%~ 190.0%。拔节期至大口期, PASP-N和CN处理LAI差异不显著, 在开花期和花后15 d, CN1和CN2处理LAI大于PASP-N1和PASP-N2处理, 而在花后30 d至成熟期, PASP-N1和PASP-N2处理LAI大于CN1和CN2处理, 在花后45 d PASP-N1、PASP-N2处理比CN1和CN2高18.5%~22.3%。
2.3.2 株高及穗位 如图4, CN和PASP-N处理的株高显著高于CK, 与CN相比, PASP-N处理玉米株高及穗位高平均分别降低1.5%~2.5%和0.7%~ 8.4%; 而与CK相比, 株高增加2.8%~5.6%, 穗位高差异不显著。
图5表明, CN和PASP-N处理的叶绿素相对含量均高于CK, 在大口期, 分别比CK高21.2%~ 30.9%和17.1%~25.7%。PASP-N1处理各生育时期SPAD值高于CN1处理, PASP-N3处理在灌浆后期(VT+40) SPAD值高于CN3处理; 花期PASP-N1处理SPAD值比CN1高8.0%, PASP-N2与CN2处理无显著差异, PASP-N3比CN3低9.1%。
图3 CN与PASP-N处理不同施肥量对玉米叶面积指数的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2; V6: 拔节期; V12; 大口期; VT: 花期; VT+15: 花后15 d; VT+30: 花后30 d; VT+45: 花后45 d; R6: 收获期。
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2, and 337.5 kg hm–2respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2, respectively; V6: elongation period; V12: flare opening period; VT: anthesis; VT+15: 15 days after anthesis; VT+30: 30 days after anthesis; VT+45: 45 days after anthesis; R6: harvest period.
图4 CN与PASP-N处理不同施肥量对玉米株高及穗位的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2。图中标以不同小写字母的柱值在0.05水平上差异显著。
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2, and 337.5 kg hm–2, respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2respectively. Value within a column yellowed by different letters are significantly different at< 0.05.
2.5.1 硝酸还原酶(NR) 在开花期, CN和PASP- N处理的叶片NR活性分别比CK低7.9%~27.4%和29.0%~29.2%, 而在花期和花后10 d , 分别高1.4%~ 19.8%和4.0%~49.5%。在花后30 d , PASP-N1处理的叶片NR活性显著低于CN1; 花后20 d和40 d各处理间差异不显著(表6)。
2.5.2 谷氨酰胺合成酶(GS) GS活性如图7所示, CN1和CN3处理在花期至花后40 d呈增加趋势, CN2和PASP-N处理呈先增加后降低的趋势, 其中花后30 d最高; 花期PASP-N和CN各处理间差异不显著; 灌浆初期(花后10 d和20 d) CK显著高于CN和PASP-N处理, 灌浆中期(花后30 d及40 d)显著低于CN和PASP-N处理, 花后30 d PASP-N处理比CN高18.5%~33.1%。
2.5.3 谷丙转氨酶(GPT) 如图8所示, 花期至花后40 d, 各处理GPT酶活性变化呈先增加后降低趋势, 其中CN和PASP-N处理在花后10 d和20 d均显著大于CK, 花后20 d分别比CK高74.5%~92.3%和39.2%~99.0%; 花后10 d和20 d PASP-N1处理分别比CN处理低17.4%和30.2%。
2.5.4 谷草转氨酶(GOT) 如图9所示, CN和PASP-N处理下, 在花后10 d GOT活性达到最大值, 而CK处理处于低谷。在花期、花后10 d至花后40 d, PASP-N处理下GOT活性比CN处理高0.8%~ 6.4%。
如表4所示, CN和PASP-N处理随施肥量增加, 氮肥偏生产力和氮肥表观利用率呈降低趋势; PASP- N处理的氮肥偏生产力、氮肥农学效率、氮肥表观利用率和氮肥生理效率均显著大于CN, 分别比CN高51.3%~54.4%、2.9%~104.2%、28.9%~126.6%和48.0%~405.2%。
图5 CN与PASP-N处理不同施肥量对玉米SPAD值的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2; V6: 拔节期; V12; 大口期; VT: 花期; VT+10: 花后10 d; VT+20: 花后20 d; VT+30: 花后30 d; VT+40: 花后40 d。
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2, and 337.5 kg hm–2respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2, respectively; V6: elongation period; V12: flare opening period; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis.
图6 CN与PASP-N处理不同施肥量对玉米硝酸还原酶活性的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2; VT: 花期; VT+10: 花后10 d; VT+20: 花后20 d; VT+30: 花后30 d; VT+40: 花后40 d。
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2 and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2, and 337.5 kg hm–2, respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis.
图7 CN与PASP-N处理施肥量对玉米谷氨酰胺合成酶活性的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2; VT: 花期; VT+10: 花后10 d; VT+20: 花后20 d; VT+30: 花后30 d; VT+40: 花后40 d。
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2, and 337.5 kg hm–2, respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis.
表4 CN与PASP-N处理不同施肥量对玉米氮素利用效率的影响
CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2。图中标以不同小写字母的值在0.05水平上差异显著。
CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2, and 337.5 kg hm–2respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2respectively. Value within a column yellowed by different letters are significantly different at< 0.05.
图8 CN与PASP-N处理不同施肥量对玉米谷丙转氨酶活性的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2; VT: 花期; VT+10: 花后10 d; VT+20: 花后20 d; VT+30: 花后30 d; VT+40: 花后40 d。
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2, and 337.5 kg hm–2respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis.
图9 CN与PASP-N处理不同施肥量对玉米谷草转氨酶活性的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm–2、225.0 kg hm–2和337.5 kg hm–2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm–2、150.0 kg hm–2和225.0 kg hm–2; VT: 花期; VT+10: 花后10 d; VT+20: 花后20 d; VT+30: 花后30 d; VT+40: 花后40 d。
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm–2, 225.0 kg hm–2, and 337.5 kg hm–2respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm–2, 150.0 kg hm–2, and 225.0 kg hm–2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis.
前人对玉米[38-40]、水稻[41-43]、小麦[44]等粮食作物和蕹菜[45]、油菜[29]、芹菜[46]、甜茶[47]、黄瓜[48]等经济作物的研究表明, 相同施氮量下, PASP能够显著提高作物干物质积累量、产量以及氮肥利用效率。在本研究中, 2016、2017两年间, 聚天门冬氨酸螯合氮(PASP-N)在总施氮量相比常规氮肥(CN)降低1/3的条件下, 玉米单产分别增加3.1%~3.2%和0.9%~3.0%, 氮肥偏生产力、氮肥农学效率、氮肥表观利用率和氮肥生理效率分别增加51.3%~54.4%、2.9%~104.2%、28.9%~126.6%和48.0%~405.2%。而玉米产量的增加主要是通过增加穗长、缩短秃尖实现的, 这与前人研究一致[49]。PASP-N处理玉米花前干物质积累量显著低于CN处理, 而花后干物质积累量两者的差异不显著, 因此, PASP-N处理提高了花后/花前干物质积累比例, 这表明PASP-N处理相比CN处理提高了玉米花后的抗逆能力, 增加了玉米花后干物质积累量[50-53]。
PASP具有极强的鳌合、分散、吸附作用, 分子中的羧基, 能螯合阳离子, 并且通过对土壤养分离子的交换吸附力和环状分子结构的吸蓄能力, 明显减少氮素、磷素和钾等养分的流失、挥发和被固定[26], 并促进植株氮磷钾的吸收[28], 提高作物产量和肥料利用率[25,29-30]。在本研究中, 氮肥在玉米播种前一次性全基施下, 聚天门冬氨酸螯合氮肥(PASP-N)相比传统氮肥(CN), 在各个施氮梯度上氮肥用量降低1/3, 由于玉米在生育前期生长缓慢, 对氮肥的吸收利用同样较慢, 常规施氮(CN)一方面容易造成氮肥的大量淋失和挥发损失, 另一方面在玉米生育前期过量施氮也容易造成玉米长势过旺, 后期容易出现早衰。在2年的试验中, PASP-N处理下, 玉米开花前地上部分干物质积累量显著低于CN处理, 而在花后反而高于CN处理, 从LAI的变化趋势上同样可以看出, PASP-N处理比CN处理延缓了花后玉米叶片的衰老速率。这些现象表明, PASP-N处理玉米在生育后期的氮肥供应状况优于CN处理, 因而玉米氮素的农学效率和偏生产力均显著大于CN处理, 显著提高了氮肥的利用率。
有研究人员通过玉米盆栽试验发现[40], 聚天门冬氨酸与常规肥料混用, 可以提高玉米幼苗叶片叶绿素含量、硝酸还原酶(NR)活性; 高娇等[50-51]利用含PASP的聚糠萘合剂(PKN)处理盆栽玉米幼苗和田间不同积温带玉米, 发现PKN 处理提高了盆栽玉米幼苗NR活性、谷氨酰胺合成酶(GS)活性。NR是氮代谢过程中的限速酶, 受光照、温度、CO2、水势等多因素影响。Ferrario-Mery等[54]证明NR活性与其底物(NO3–)浓度正相关, 与氮同化产物NH3、谷氨酰胺、谷氨酸成负相关, 而GS是植物体内氨同化的关键酶之一, 在ATP和Mg2+存在下, 它催化植物体内NH3和谷氨酸形成谷氨酰胺。本研究中PASP-N处理玉米叶片NR活性从花期至花后20 d的减弱, 可能与该时段GS活性低, 导致NH3、谷氨酰胺、谷氨酸等氮同化产物积累多有关。在花后30 d和40 d, NR活性与CN无显著差异, 同时期GS活性显著高于CN处理, 进一步证明NR活性受GS活性调控; 在氮素同化过程中, NR催化NO3-转化成NO2-, NO2-在亚硝酸还原酶(NiR)的作用下将NO2-还原成NH3, 植物组织中的NiR存在量大, 所以亚硝酸盐很少在植物体内积累, GS催化无机NH3转化为谷氨酸; GS和GPT、GOT调控谷氨酸、谷氨酰胺以及天门冬氨酸、丙氨酸等其他氨基酸的合成[55-57]。本试验中, PASP-N处理GOT活性增强, GPT活性下降, 由此可见, PASP-N处理下, 玉米植株对天门冬氨酸的合成和代谢强于丙氨酸。前人研究表明, CN全基施易造成氮肥资源浪费和玉米早衰减产[58], 本试验中, PASP-N处理下玉米花后干物质积累较花前强, 灌浆中后期NR活性高于CN处理, 且GS活性高于CN处理, 同时叶面积指数增大, 由此可看出, PASP-N处理加强了玉米在灌浆中后期功能叶的氮素代谢能力, 延缓了玉米叶片衰老速率。综上, PASP-N处理相比CN处理具有缓控氮肥释放的作用, 能够在东北春玉米区作为基肥一次性施用取得较理想的效果。
聚天门冬氨酸螯合氮肥(PASP-N)能比常规氮肥(CN)降低玉米灌浆期叶片硝酸还原酶(NR)活性, 提高叶片谷氨酰胺合成酶(GS)和谷草转氨酶的活性(GOT), 促进玉米籽粒灌浆中后期的氮素代谢, 延缓叶片衰老并提高花后地上部分干物质的积累量。一次性基施PASP-N比CN施氮量减少1/3, 可增产玉米, 提高肥料利用率, 适合在东北春玉米区应用。
[1] 曾靖, 常春华, 王雅鹏. 基于粮食安全的我国化肥投入研究. 农业经济问题, 2010, 31(5): 66–70. Zeng J, Chang C H, Wang Y P. Study on the fertilizer inputs based on China’s food security., 2010, 31(5): 66–70 (in Chinese).
[2] 李秀芬, 朱金兆, 顾晓君, 朱建军. 农业面源污染现状与防治进展. 中国人口·资源与环境, 2010, 20(4): 81–84. Li X F, Zhu J Z, Gu X J, Zhu J J. Current situation and control of agricultural non-point source pollutio, 2010, 20(4): 81–84 (in Chinese with English abstract).
[3] 王宜伦, 李潮海, 谭金芳, 张许, 刘天学. 氮肥后移对超高产夏玉米产量及氮素吸收和利用的影响. 作物学报, 2011, 37: 339–347. Wang Y L, Li C H, Tan J F, Zhang X, Liu T X. Effect of postponing N application on yield, nitrogen absorption and utilization in super-high-yield summer maize., 2011, 37: 339–347 (in Chinese with English abstract).
[4] 孙浒. 不同施氮方式对夏玉米产量和氮素利用效率的影响. 山东农业大学硕士学位论文, 山东泰安, 2014. Sun H. Effects of Different Nitrogen Management on Yield and Nitrogen Use Efficiency of Summer Maize. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2014 (in Chinese with English abstract).
[5] Fox R H, Kern J M, Piekielek W P. Nitrogen fertilizer source, and method and time of application effects on no-till corn yields and nitrogen uptakes., 1986, 78: 741–746.
[6] 吕鹏, 张吉旺, 刘伟, 杨今胜, 刘鹏, 董树亭, 李登海. 施氮时期对超高产夏玉米产量及氮素吸收利用的影响. 植物营养与肥料学报, 2011, 17: 1099–1107. Lyu P, Zhang J W, Liu W, Yang J S, Liu P, Dong S T, Li D H. Effects of nitrogen application dates on yield and nitrogen use efficiency of summer maize in super-high yield conditions., 2011, 17: 1099–1107 (in Chinese with English abstract).
[7] 夏光利, 毕军, 史桂芳, 朱国梁, 牟小翎, 董浩, 谭德水. 分层施肥对冬小麦产量及氮素效应的影响研究. 山东农业科学, 2016, 48(4): 72–74. Xia G L, Bi J, Shi G F, Zhu G L, Mou X L, Dong H, Tan D S. Effects of layered fertilization on yield and nitrogen effect of winter wheat., 2016, 48(4): 72–74 (in Chinese with English abstract).
[8] 高凤菊, 吕金岭. 尿素深施对小麦产量及氮肥利用率的影响. 山东农业科学, 2006, (3): 48–49. Gao F J, Lyu J L. Effects of urea depth on wheat yield and nitrogen utilization rate., 2006, (3): 48–49 (in Chinese).
[9] 黄庆裕, 蒲才潮. 碳酸氢铵全层深施对水稻的增产效果. 土壤肥料, 2006, (1): 60–61. Huang Q Y, Pu C C. Effects of full depth of ammonium bicarbonate on rice yield., 2006, (1): 60–61 (in Chinese).
[10] 张文玲, 王文科, 李桂花. 施肥方式对不同小麦品种生长和氮肥利用率的影响. 中国土壤与肥料, 2009, (2): 47–51. Zhang W L, Wang W K, Li G H. Effects of different applying methods on nitrogen use efficiency and growth of different wheat varieties.2009, (2): 47–51 (in Chinese with English abstract).
[11] 李殿平, 曹海峰, 张俊宝, 金学泳. 全程深施肥对水稻产量形成及稻米品质的影响. 中国水稻科学, 2006, 20: 73–78. Li D P, Cao H F, Zhang J B, Jin X Y. Effect of deep application of fertilizer in the whole growing period on yield formation and quality of rice.2006, 20: 73–78 (in Chinese with English abstract).
[12] 王应君, 王淑珍, 郑义. 肥料深施对小麦生育性状、养分吸收及产量的影响. 中国农学通报, 2006, 22(9): 276–280. Wang Y J, Wang S Z, Zheng Y. Effects of deep application of fertilizer on growth character, absorption of nutrition and yield in wheat., 2006, 22(9): 276–280 (in Chinese with English abstract).
[13] Rees R M, Roelcke M, Li S X. The effect of fertilizer placement on nitrogen uptake and yield of wheat and maize in Chinese loess soils., 1996, 47: 81–91.
[14] 徐秋明, 曹兵, 牛长青, 付铁梅. 包衣尿素在田间的溶出特征和对夏玉米产量及氮肥利用率影响的研究. 土壤通报, 2005, (3): 357–359. Xu Q M, Cao B, Niu C Q, Fu T M. Nutrient release characteristics of coated urea under field condition and inf1uence on summer corns yield and nitrogen utilization efficiency., 2005, (3): 357–359 (in Chinese with English abstract).
[15] 易镇邪, 王璞, 陈平平, 屠乃美. 氮肥类型对夏玉米氮素吸收和利用的影响. 植物营养与肥料学报, 2008, 14: 472–478. Yi Z X, Wang P, Chen P P, Tu N M. Effects of different types of nitrogen fertilizer on nitrogen absorption and utilization of summer maize (L.)., 2008, 14: 472–478 (in Chinese with English abstract).
[16] 王利纳, 陶洪斌, 戴明宏, 王彩彩, 冯烁, 王璞. 包膜尿素对夏玉米产量及碳氮代谢的影响. 玉米科学, 2009, 17(2): 124–129. Wang L N, Tao H B, Dai M H, Wang C C, Feng S, Wang P. Effect of coated urea on grain yield and carbon-nitrogen metabolism of summer maize., 2009, 17(2): 124–129 (in Chinese with English abstract).
[17] 吕娇, 李淑敏, 潘明阳, 刘昕昕. 不同包膜控释氮肥对玉米氮素吸收和产量的影响. 天津农业科学, 2012, 18(1): 46–50. Lyu J, Li S M, Pan M Y, Liu X X. Effect of different controlled-release n fertilizers on nitrogen absorption and yield of maize., 2012, 18(1): 46–50 (in Chinese with English abstract).
[18] 付永强. 尿素类型和施用量对玉米氮素吸收利用与产量形成的影响. 四川农业大学硕士论文, 四川成都, 2015. Fu Y Q. Effects or Type and Application Rate of Urea on Yield and Nitrogen Utilization of Maize. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015 (in Chinese with English abstract).
[19] 陈贤友, 吴良欢, 韩科峰, 李金先, 应金耀. 包膜尿素和普通尿素不同掺混比例对水稻产量与氮肥利用率的影响. 植物营养与肥料学报, 2010, 16: 918–923. Chen X Y, Wu L H, Han K F, Li J X, Ying J Y. Effects of different mixture rates of coated urea and prilled urea on rice grain yield and nitrogen use efficiency., 2010, 16: 918–923 (in Chinese with English abstract).
[20] 串丽敏, 安志装, 杜连凤, 赵同科, 李顺江. 脲酶/硝化抑制剂对壤质潮土氮素淋溶影响的模拟研究. 中国农业科学, 2011, 44: 4007–4014. Chuan L M, An Z Z, Du L F, Zhao T K, Li S J. Effects of urease/nitrification inhibitor on soil nitrogen leaching loss in loamy fluvo-aquic soil., 2011, 44: 4007–4014 (in Chinese with English abstract).
[21] 黄益宗, 冯宗炜, 王效科, 张福珠. 硝化抑制剂在农业上应用的研究进展. 土壤通报, 2002, 33: 310–315. Huang Y Z, Feng Z W, Wang X K, Zhang F Z. Research progress of nitrification inhibitors applied in agriculture., 2002, 33: 310–315 (in Chinese with English abstract).
[22] 余光辉, 张杨珠, 万大娟. 几种硝化抑制剂对土壤和小白菜硝酸盐含量及产量的影响. 应用生态学报, 2006, 17: 247–250. Yu G H, Zhang Y Z, Wan D J. Effects of nitrification inhibitors on nitrate content in soil and pakchoi and on pakchoi yield., 2006, 17: 247–250 (in Chinese with English abstract).
[23] 倪秀菊, 李玉中, 徐春英, 李巧珍. 土壤脲酶抑制剂和硝化抑制剂的研究进展. 中国农学通报, 2009, 25(12): 145–149. Ni X J, Li Y Z, Xu C Y, Li Q Z. Advance of research on urease inhibitor and nitrification inhibitor in soil., 2009, 25(12): 145–149 (in Chinese with English abstract).
[24] 李燕燕, 朱孔杰, 张源. 聚天冬氨酸合成及农业上的应用研究进展. 广东化工, 2015, 42(15): 141–142. Li Y Y, Zhu K J, Zhang Y. Research progress on the synthesis and application of polyaspartic acid in agriculture., 2015, 42(15): 141–142 (in Chinese with English abstract).
[25] 黄启亮, 韩广泉, 侯红燕, 乔彭蕾, 谢全喜, 张建梅. 土壤肥料增效剂——聚天门冬氨酸研究现状及应用前景. 农村经济与科技, 2015, (4): 62–63. Huang Q L, Han G Q, Hou H Y, Qiao P L, Xie Q X, Zhang J M. Research status and application prospect of soil fertilizer synergist—polyaspartic acid., 2015, (4): 62–63 (in Chinese).
[26] 杜中军, 杨浩, 王树昌, 徐立, 王炳, 王康林, 李松刚, 罗海燕. 农用聚天门冬氨酸同源多肽研究进展. 热带作物学报, 2011, 32: 2381–2384. Du Z J, Yang H, Wang J C, Xu L, Wang B, Wang K L, Li S G, Luo H Y. Advance of homologous polypeptides polyaspartic acids for agriculture., 2011, 32: 2381–2384 (in Chinese with English abstract).
[27] 谢方淼, 李东坡, 李健强, 蔡典雄. 聚天冬氨酸尿素对土壤微生物量碳、氮的影响. 中国土壤与肥料, 2011, (4): 8–12. Xie F M, Li D P, Li J Q, Cai D X. Effects of polyaspartic urea (PASP-Urea) on soil microbial biomass carbon and nitrogen under incubation and pot experiment.2011, (4): 8–12 (in Chinese with English abstract).
[28] 杜中军, 杨浩, 王永造, 罗海燕, 徐立, 王康林, 王炳. 聚天门冬氨酸同源多肽的水稻产量效应和磷素营养吸收效应研究. 现代农业科技, 2012, (18): 12–13. Du Z J, Yang H, Wang Y H, Luo H Y, Xu l, Wang K L, Wang B. Effects on yield and phosphorus nutrition absorbing for rice using homologous polypeptides of polyaspartic acids., 2012, (18): 12–13 (in Chinese with English abstract).
[29] 张琳, 左强, 邹国元. 施用不同水平聚天门冬氨酸对油菜生长的影响. 黑龙江农业科学, 2013, (12): 27–29. Zhang L, Zuo Q, Zou G Y. Effects of polyaspartic acid with different levels on growth ofL., 2013, (12): 27–29 (in Chinese with English abstract).
[30] 雷全奎, 杨小兰, 马雯场, 姜秋会. 聚天门冬氨酸对土壤理化性状的影响. 陕西农业科学, 2007, (3): 75–76. Lei Q K, Yang X L, Ma W C, Jiang Q H. Effects of polyaspartic acid on physicochemical properties of soil., 2007, (3): 75–76 (in Chinese with English abstract).
[31] 程凤娴, 官利兰, 邓兰生, 涂攀峰, 龚林, 张承林. 聚天门冬氨酸对玉米生长的影响. 安徽农业科学, 2015, 43(4): 105–106. Cheng F X, Guan L L, Deng L S, Tu P F, Gong L, Zhang C L. Effects of polyaspartic acid on maize growth., 2015, 43(4): 105–106 (in Chinese with English abstract).
[32] 侯晓娜. 黄腐酸和聚天冬氨酸对蔬菜氮素吸收及肥料氮转化的影响. 中国农业科学院硕士学位论文, 北京, 2013.Hou X N. Effects of Fulvic Acid and Polyaspartic Acid on Nitrogen Uptake of Vegetables and Transformation of Fertilizer Nitrogen. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[33] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization., 1982, 74: 562–564.
[34] 李潮海, 刘奎, 周苏玫, 栾丽敏. 不同施肥条件下夏玉米光合对生理生态因子的响应. 作物学报, 2002, 28: 265–269. Li C H, Liu K, Zhou S M, Luan L M. Response of photosynthesis to eco-physiological factors of summer maize on different fertilizer amounts., 2002, 28: 265–269 (in Chinese with English abstract)..
[35] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 95–100. Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiment. Beijing: Higher Education Press, 2000. pp 95–100 (in Chinese).
[36] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000. pp 56–59, 125–126. Zou Q. Experiment Guide for Plant Physiology. Beijing: China Agriculture Press, 2000. pp 56–59, 125–126 (in Chinese).
[37] 吴良欢, 蒋式洪, 陶勤南. 植物转氨酶活度比色测定方法及其应用. 土壤通报, 1998, 29(3): 136–138. Wu L H, Jiang S H, Tao Q N. Colorimetric determination of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activity in plants and its application., 1998, 29(3): 136–138 (in Chinese).
[38] 冷一欣, 芮新生, 何佩华. 施用聚天冬氨酸增加玉米产量的研究. 玉米科学, 2005, 13(3): 102–104. Leng Y X, Rui X S, He P H. Study of the yield increasing of maize by using polyaspartic acid., 2005, 13(3): 102–104 (in Chinese with English abstract).
[39] 张洪生, 井涛, 赵美爱, 姜雯. 聚天冬氨酸和保水剂对干旱条件下玉米幼苗生长的影响. 中国农学通报, 2013, 29(6): 59–62. Zhang H S, Jing T, Zhao A M, Jiang W. Effects of polyaspartic acid (PASP) and water-retention agent on the growth in maize (L.) at seedling stage under water deficit condition., 2013, 29(6): 59–62 (in Chinese with English abstract).
[40] 姜雯, 周登博, 张洪生, 张延胜. 不同施肥水平下聚天冬氨酸对玉米幼苗生长的影响. 玉米科学, 2007, 15(5): 121–124. Jiang W, Zhou D B, Zhang H S, Zhang Y S. The Effect of polyaspartic acid on maize growth at seedling stage under different fertilizer applied condition., 2007, 15(5): 121–124 (in Chinese with English abstract).
[41] 许峰, 沈剑, 赖清云. 聚天冬氨酸在水稻生产中的应用研究. 现代农业科技, 2011, (6): 305–306. Xu F, Shen J, Lai Q Y. The applied study of polyaspartic acid in rice production., 2011, (6): 305–306 (in Chinese).
[42] Deng F, Wang L, Ren W J, Mei X F, Li S X. Optimized nitrogen managements and polyaspartic acid urea improved dry matter production and yield of indica hybrid rice., 2015, 145: 1–9.
[43] Deng F, Wang L, Ren W J, Mei X F. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea., 2014, 169: 30–38.
[44] 朱凌宇, 徐荣, 张家宏, 寇祥明, 王宏凯, 陈雷, 王守红, 王桂良, 韩光明, 毕建花, 唐鹤军. 聚天冬氨酸增效复合肥在小麦上的应用效果. 江苏农业科学, 2016, 44(6): 132–134. Zhu L Y, Xu R, Zhang J H, Kou X M, Wang H K, Chen L, Wang S H, Wang G L, Han G M, Bi J H, Tang H J. Effect of polyaspartic acid compound fertilizer on wheat., 2016, 44(6): 132–134 (in Chinese).
[45] 侯晓娜, 王旭. 黄腐酸和聚天冬氨酸对蕹菜氮素吸收及氮肥去向的影响. 中国土壤与肥料, 2014, (1): 48–52.Hou X N, Wang X. Effects of fulvic acid and polyaspartic acid on nitrogen uptake and fate of nitrogen fertilizer in water spinach., 2014, (1): 48–52 (in Chinese with English abstract).
[46] 张弓长, 蔡虎铭, 钱程, 刘广富. 水溶肥中添加聚天冬氨酸和黄腐酸钾对芹菜产量及经济效益的影响. 安徽农业科学, 2016, 44(33): 103–105. Zhang G C, Cai H M, Qian C, Liu G F. Effects of water soluble fertilizers on the yield and economic benefits of celery by adding polyaspartic acid and fulvic acid potassium., 2016, 44(33): 103–105 (in Chinese with English abstract).
[47] 陈倩, 李洪娜, 门永阁, 魏绍冲, 姜远茂. 不同聚天冬氨酸水平对盆栽平邑甜茶幼苗生长及15N-尿素利用与损失的影响. 水土保持学报, 2013, 27(1): 126–129. Chen Q, Li H N, Men Y G, Wei S C, Jiang Y M. Effects on the growth of pottedRehdseedings, utilization and loss of15N-urea under different supply levels of polyaspartic acid., 2013, 27(1): 126–129 (in Chinese with English abstract).
[48] 黄毅, 李衍素, 贺超兴, 于贤昌. 根施聚天门冬氨酸对日光温室黄瓜生长、产量及矿质元素吸收的影响. 中国蔬菜, 2018, (1): 44–49. Huang Y, Li Y S, He C X, Yu X C. Effect of polyaspartic acid root application on growth, yield and mineral elements absorption of cucumber grown in solar greenhouse.2018, (1): 44–49 (in Chinese with English abstract).
[49] 孙克刚, 张运红, 杜君, 和爱玲, 陈剑秋, 张强. 尿素添加不同增效剂对夏玉米产量及氮肥利用率的影响. 中国土壤与肥料, 2017, (1): 45–47. Sun K G, Zhang Y H, Du J, He A L, Chen J Q, Zhang Q. Effects of urea added with different fertilizer synergists on maize yield and nitrogen use efficiency., 2017, (1): 45–47 (in Chinese with English abstract).
[50] 高娇, 董志强, 徐田军, 陈传晓, 焦浏, 卢霖, 董学瑞. 聚糠萘水剂对低温胁迫玉米幼苗氮代谢酶活的调控效应. 玉米科学, 2013, 21(4): 48–54. Gao J, Dong Z Q, Xu T J, Chen C X, Jiao L, Lu L, Dong X R. Effects of PASP-KT-NAA on nitrogen metabolism enzyme activities of maize seedlings under low temperature stress., 2013, 21(4): 48–54 (in Chinese with English abstract).
[51] 高娇, 董志强, 徐田军, 陈传晓, 焦浏, 卢霖, 董学瑞. 聚糠萘水剂对不同积温带玉米花后叶片氮同化的影响. 生态学报, 2014, 34: 2938–2947. Gao J, Dong Z Q, Xu T J, Chen C X, Jiao L, Lu L, Dong X R. Effects of PASP-KT-NAA on maize leaf nitrogen assimilation after lorescence over different temperature gradients.2014, 34: 2938–2947 (in Chinese with English abstract).
[52] 陈传晓, 董志强, 高娇, 徐田军, 焦浏, 卢霖, 张凤路. 聚糠萘水剂对不同积温带春玉米灌浆期光合性能的影响. 玉米科学, 2013, 21(3): 66–70. Chen C X, Dong Z Q, Gao J, Xu T J, Jiao L, Lu L, Zhang F L. Effects of PASP-KT-NAA on the photosynthetic performances of different maize cultivars in different accumulated temperature zones., 2013, 21(3): 66–70 (in Chinese with English abstract).
[53] 徐田军, 董志强, 高娇, 陈传晓, 焦浏, 解振兴. 聚糠萘水剂对不同积温带玉米叶片衰老和籽粒灌浆速率的影响. 作物学报, 2012, 38: 1698–1709. Xu T J, Dong Z Q, Gao J, Chen C X, Jiao L, Xie Z X. Effect of PASP-KT-NAA on leaf senescence and grain filling rate during the grain-filling period in different temperature zones., 2012, 38: 1698–1709 (in Chinese with English abstract).
[54] Ferrario-Méry S, Masclaux C, Suzuki A, Valadier M H, Hirel B, Foyer C H. Glutamine and alpha-ketoglutarate are metabolite signals involved in nitrate reductase gene transcription in untransformed and transformed tobacco plants deficient in ferredoxin-glutamine-alpha-ketoglutaate aminotransferase., 2001, 213: 265–271.
[55] Miflin B, Habash D. The role of glutamine synthetase and gluta-mate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops., 2002, 53: 979–987.
[56] Daubresse C M, Carrayol E, Valadier M H. The two nitrogen mobilisation and senescence-associated GS1 and GDH genes are controlled by C and N metabolites., 2005, 221: 580–588.
[57] Bernard S M, Habash D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling., 2009, 182: 608–620.
[58] Meng Q F, Chen X P, Zhang F S, Cao M H, Cui Z L, Bai J S, Yue S C, Chen S Y, Muller T. In-season root-zone nitrogen management strategies for improving nitrogen use efficiency in high-yielding maize production in China., 2012, 22: 294–303.
Increasing spring maize yield by basic application of PASP chelating nitrogen fertilizer in northeast China
TANG Hui-Hui, XU Yan-Li, WANG Qing-Yan, MA Zheng-Bo, LI Guang-Yan, DONG Hui, and DONG Zhi-Qiang*
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Ecophysiology and Cultivation, Beijing 100081, China
The randomized block field experiments were conducted using maize variety of Zhongdan 909 with different nitrogen treatments of polyaspartic acid chelating nitrogen fertilizer (PASP-N) and commonly used nitrogen fertilizer (CN) in Gongzhuling Experimental Station (43º29¢55¢¢N, 124º48¢43¢¢E) in Jilin province in 2016 and 2017. The PASP-N increased maize yield, ear length and leaf area index (LAI) by 0.9%–3.0%, 0.5%–2.9%, and 18.5%–22.3% respectively, and decreased bare top length, plant height and ear height by 13.8%–46.7%, 1.5%–2.5%, and 0.7%–8.4%, respectively, compared with CN. Moreover, PASP-N significantly influenced activity of enzymes related to nitrogen metabolism: nitrate reductase (NR) activity decreased by 1.4%–19.8% at anthesis stage, glutamine synthetase (GS) activity increased by 18.5%–33.1% at 30 days after anthesis, and glutamic oxalacetic transaminase (GOT) activity increased by 0.8%–6.4% at 20 days after anthesis. The total nitrogen inputs of PASP-N and CN for the highest maize yield were 185.3 kg ha–1and 219.1 kg ha–1, respectively, with 108.9 kg ha–1higher in PASP-N treatment than in CN treatment. Nitrogen fertilizer partial productivity, agronomic efficiency, apparent utilization and physiological efficiency of nitrogen fertilizer in PASP-N treatment increased by 51.3%–54.4%, 2.9%–104.2%, 28.9%–126.6%, and 48.0%–405.2%, respectively, compared with these in CN treatments. In conclusion, PASP could enhance nitrogen metabolism during middle and late grain-filling stage, resulting in increased yield and nitrogen use efficiency in maize.
PASP; spring maize; reduction of nitrogen; nitrogen use efficiency; one-time basic fertilizer application
2018-07-22;
2018-12-25;
2019-01-07.
10.3724/SP.J.1006.2019.83056
董志强, E-mail: dongzhiqiang@caas.cn, Tel: 010-82106043
E-mail: tanghuihui0609@163.com
本研究由国家重点研发计划项目(2018YFD0200608)和横向合作项目(2016110001000035)资助。
The study was supported by the National Key Research and Development Program of China (2018YFD0200608) and the Horizontal Cooperation Project (2016110001000035).
URL:http://kns.cnki.net/kcms/detail/11.1809.s.20190103.1711.011.html