马显荣
摘 要:教师在教学中需要合理的应用微型探究教学方法, 这有利于培养学生的探究性思维, 让学生可以做到学有所用, 提高学生的数学学习效率和效果, 促进高中数学教学的发展.
关键词:高中数学 微型探究教学
现阶段能够在学校数学教学中学习到微型探究知识的学生很少, 这就限制了很多学生的数学思路发展, 使得学生的思路还是较为狭窄, 不利于学生数学推理能力的提升.当前教师需要改变这种问题, 在数学教学中需要有效落实微型探究策略, 拓展学生的课题, 带领学生思考探究性的课题, 让学生能够有效地使用数学原理解决问题, 提升他们的推理能力.教师还要利用微型探究策略引导学生对问题进行思考, 结合学生的实际情况, 科学安排教学的内容和重点.
一、高中数学微型探究教学的现状
1.受传统教学观念的影响
我国教育受传统教学观念影响较深, 高中院校中尤其是那些年龄较大的教师, 他们具有丰富的经验, 但是在教育理念上较为陈旧, 他们已经习惯了传统的教学方式, 这样的教师无法快速地接受新的教学方式, 这就限制了教学改革的效果, 正是因为教师的这一习惯, 使得当前很多高中学校中的数学教学还是使用传统的教学模式和方法.微型探究式教学方法不同于以往的教学方式, 其尊重学生, 并在此基础上进行教学, 教学的主要方式是学生自主学习以及主动提问, 重视培养学生的探究能力以及创新能力, 采取这一教学方法, 可以营造活跃的课堂氛围, 让学生可以积极地参与进去.
2.学校对微型探究教学缺乏正确的认识
高中数学知识点多, 难度提升, 教师的教学任务也比较繁重, 为了满足新课标的要求, 学校在落实教学改革中没有全面、正确地认识微型探究教学方法, 担心在繁重的教学任务下实施这一教学方法会对教学的质量产生消极的影响.受应试教育影响, 高中学生需要面对高考的检验, 他们有较大的学习压力, 因此课堂时间也被安排得较为紧凑, 微型探究教学方法在高中的运用还不是很成熟, 这也让学校对其缺乏全面地认识, 这也是影响这一教学方法在数学教学中应用效果的一个重要因素.
3.学生还是习惯传统的教学方式
我国教育受传统教育影响较深, 学生自从接受教育以來接受的都是这种教育模式, 这也让学生逐渐习惯了这样的学习习惯, 对于教师使用的新的教学方法反而难以适应, 不能理解新的教学方法中要传达的知识点.这也使得教学无法激发出学生的兴趣和积极性, 会不利于学生成绩的提升, 还会影响课堂上的教学氛围, 这些使得微型探究教学无法充分发挥出其作用。
二、高中数学微型探究教学的实践策略
1.结合学生的爱好制定课题, 激发学生探究兴趣
教师在数学教学中应用微型探究教学要确保其实施的有效性, 就需要全面调动学生的参与热情和积极性, 让学生可以主动积极地参与到课堂教学中, 要实现这一点就需要教师先掌握学生的喜好情况, 通过有效地调查掌握他们的实际喜好, 进而以此为基础进行微型探究课题的设计.课题内容需要和学生平时常接触的事物进行有机结合, 消除学生对数学学习的抵抗心理, 让他们可以充分参与到课题教学中, 有效地参与到探究中, 收获知识.
2.通过实践活动开展微型教学
高中数学的难度较大, 很多学生在学习的过程中都会遇到很多的困难, 如立体几何就是难点中的难点, 学生在学习中的效果并不是很理想, 这是因为学生的立体思维有限.要提升学生立体几何的学习效果就需要引导学生, 帮助学生树立结合思维, 逐渐加深对立体几何知识的理解程度, 教师可以设计有效的探究题让学生探究, 在这一过程中引导学生, 掌握几何思维和正确的学习方法, 提升他们的学习效率和效果.例如, 教师在讲解棱锥、棱柱、棱台的有关知识时就可以应用微型探究课题的方法: (1) 现在有两个立体形状, 第一个是等边三角形组成的四棱锥, 第二个是一个正方体, 其边长和四棱锥一样, 将两者组成一个完整的多面体, 然后将其展开, 怎样表示其表面积、体积? (2) 有两个相同的三棱柱, 其上面及下面都是三角形, 棱柱的三个侧面都是矩形, 棱长是, 假设棱柱底面的三边长度分别是3a, 4a及5a, 将这两个完全一样的棱柱拼凑起来, 形成一个完整的四棱柱, 要让其平铺面积最小, a要怎么取值?让学生探究这些问题, 为了激发学生的探究热情和积极性, 教师需要提升微型探究的有趣性, 教师可以给学生准备一些纸片, 让学生通过自己动手制作出一个和问题中一样的图形和图片, 并且自己拼凑出这些立体形状, 在此基础上开始进行探究, 通过这样的方式对几何题目进行分析, 可以有效提升学生的自主探究能力, 有利于学生的数学学习.
3.逐渐提升微型探究课题的难度
为了确保微型探究教学实施的有效性, 教师在采取这一教学方式教学中需要注意循序渐进, 要先从基础入手, 让学生可以更好地适应这种方式, 在学生适应之后再不断加大课题的难度, 让学生循序渐进地学习和巩固知识, 进而真正地掌握知识.例如, 在学习基本不等式有关内容时, 教师就可以开展相应的微型探究活动, 把知识和探究问题联系起来:先取出一个两边秤臂一长一短的台秤, 再取出一个物品放到台秤的其中一个秤盘上, 测量出物品的重量为x, 随后把物品转移到另外一边的秤盘上, 测量出物品的重量为y, 进而给学生提出几个问题, 逐渐提升问题的难度, 让学生可以逐步解决, 提升他们数学学习的信心, 确保微型探究教学的实施效果, 如: (1) 这个物品的重量能不能用来表示? (2) 如果不能准确表示被测物品的重量, 那么物品的重量要怎么表示才正确? (3) 比较和谁更大, 谁更小?
参考文献
[1] 基于学生“困惑”的高三数学复习模式及实践策略[J]. 杨玫. 数学教学通讯. 2017(15)
[2] 凸显高阶思维的化学教学:内涵、必要性和实践策略[J]. 杨季冬,王后雄,童文昭. 化学教学. 2018(06)
[3] 综合实践活动课程的实践策略与课程价值[J]. 北京市第十五中学课题组. 北京教育(普教版). 2005(Z1)