王 兴,祁剑英,井震寰,李 超,张海林
长期保护性耕作对稻田土壤团聚体稳定性和碳氮含量的影响
王 兴,祁剑英,井震寰,李 超,张海林※
(中国农业大学农学院,农业农村部农作制度重点实验室,北京 100193)
为研究双季稻()土壤团聚体稳定性及C、N含量对耕作方式的响应,该研究利用已进行12 a的包括翻耕+秸秆不还田(CT),翻耕+秸秆还田(CTS),旋耕+秸秆还田(RTS)和免耕+秸秆还田(NTS)的保护性耕作稻田定位试验,运用湿筛等方法测算了团聚体的构成与稳定性,C、N含量及其对土壤总C、N的贡献。结果表明:长期秸秆还田显著增加0~10 cm土层大团聚体比重,弱化翻耕、旋耕和免耕等不同耕法对表层大团聚体的差异化影响(>0.05),但5~30 cm土层大团聚体随耕作强度的减弱有所提高。总体来看,稻田土壤团聚体以>2 mm粒径为主(占35.02%~64.44%),其C、N贡献率分别达52.12%和52.16%;秸秆还田有利于微团聚体向大团聚体的转化,外源C、N更多被大团聚体固持和保护。NTS在0~20 cm的>2 mm团聚体对土壤C、N的贡献率显著大于其他处理;土壤C、N含量与团聚体稳定性呈显著正相关关系(<0.05)。相比于CTS与RTS,长期采取NTS显著改善土壤C、N含量,促进大团聚体的形成和稳定,对改善稻田耕层(尤其0~20 cm)土壤团聚体稳定性具有显著的效果(<0.05)。因此,采取保护性耕作措施对南方双季稻田土壤质量及农业生态持续性具有积极的作用。
土壤;团聚体;耕作;秸秆还田;土壤碳氮;双季稻
土壤团聚体是反映土壤肥力、功能的重要参数之一[1-2],是土壤功能结构的基本组成单元,能够影响水分转运储存、通气性、生物活性、以及作物生产状况等[3-6]。良好的土壤团聚体结构为稳定与固持土壤有机质提供了重要载体[7],而有机质的积累也促进土壤团聚体组分及不同粒级团聚体C、N分布的动态变化[8]。因此,构建和维持良好的土壤团聚体结构是实现农田土壤可持续利用的基础。团聚体结构受诸如土壤利用类型[9]、土壤管理措施[10]、土壤生物组成[11]、土壤母质[2]等自身及外界条件的影响。农田生态系统作为具有强烈人为影响的作物生产系统,土壤养分及团聚体性能不可避免地会对耕作、秸秆还田等管理措施产生响应。近年来,国内外学者从耕作措施、种植方式、秸秆投入等多角度对这种响应进行了研究,研究认为耕作方式对土壤团聚体的形成及其稳定性有重要影响[12],会影响不同粒级团聚体里C、N含量[13];减少土壤扰动会增加土壤团聚体的稳定性,且会增加大团聚体中C含量[14];田慎重等[15]认为免耕秸秆还田能显著增加土壤水稳性团聚体比例及稳定性等。综合来看,当前关于耕作措施下土壤团聚体特征及其养分分布特性的研究已取得一些重要认识,但在稻作区采取长期保护性耕作措施的影响仍需要进一步系统研究。
南方双季稻区是中国水稻的主要产区之一,传统耕作(如翻耕)仍是当地农户的主要生产措施,其带来的诸如加速土壤侵蚀、促进土壤有机碳(SOC)损失、土壤质量退化等负面效应以及更多的劳动力需求[16],促使稻田保护性耕作技术得到快速推广。有研究表明,稻田土壤团聚体构成比例及团聚体水稳定性是表征土壤质量的主要指标之一[17]。当前关于在双季稻系统中长期采取保护性耕作措施下土壤团聚体稳定性及碳氮分布的研究还较少。因此,研究长期保护性耕作下双季稻田土壤团聚体特性及C、N分布特征具有重要的意义。本研究基于12 a的长期保护性耕作定位试验,通过对土壤团聚体以及相关C、N含量的分析,评价耕作措施对土壤团聚体粒径分布及团聚体稳定性的影响,研究不同耕作措施下土壤有机碳(SOC)、全氮(TN)在不同粒径团聚体中的含量差异,以期对双季稻种植区耕作措施的优化提供理论参考。
本试验在湖南省长沙市宁乡市回龙铺镇天鹅村(112°18′ E,28°07′ N)试验示范基地进行(图1),为长期保护性耕作定位试验(始于2005年),试验建立前,该田块即采用冬闲-早稻-晚稻种植模式,由农户采取传统耕法进行统一耕种。试验区域属于亚热带季风性湿润气候,周年光热雨水资源充足,年均气温约为16.8 ℃,年均降雨量约为1 358.3 mm,年蒸散量约为1 353.9 mm,年日照时数约为1 737.6 h,年平均无霜期为274 d,具有长江流域典型双季稻种植区特征[18]。试验区土壤为水稻土,粉质黏壤土类型(43%砂粒、35%粉粒和22%黏粒)[19],属典型的湘中红壤丘陵区。试验前测得耕层0~20 cm土壤容重为1.21 g/kg,有机质34.9 g/kg,速效氮224.1 mg/kg,有效磷4.38 mg/kg,速效钾97.1 mg/kg,全氮1.29 g/kg,全磷1.23 g/kg,全钾17.63 g/kg,pH值6.30。
图1 试验区位图
试验设翻耕+秸秆不还田(CT)、翻耕+秸秆还田(CTS)、旋耕+秸秆还田(RTS)以及免耕+秸秆还田(NTS)4个处理。每个处理重复3次,共12个小区,小区面积为64 m2。试验采用早-晚稻生产体系,采用秧盘育苗和抛秧技术,早稻品种为湘早籼45号,抛秧前施用复合肥391 kg/hm2(195.5 kg/hm2N,34.14 kg/hm2P,97.33 kg/hm2K)做基肥,起身后追施尿素47 kg/hm2(21.62 kg/hm2N)。晚稻品种为湘晚稻13号,抛秧前基肥施用复合肥469 kg/hm2(234.50 kg/hm2N,40.95 kg/hm2P,116.75 kg/hm2K),起身后追施尿素39 kg/hm2(17.94 kg/hm2)。两季土壤耕作前灌水深约2 cm,收获后留茬高度约25 cm,还田处理的秸秆年还田量约为12 500 kg/hm2。各处理田间管理措施一致,具体处理方式见表1。
1.3.1 土样采集
供试土壤样品采集于2016年11月晚稻收获前,按“S”形多点采集各试验小区0~5、5~10、10~20、20~30 cm土层原状土壤,并置于铝制饭盒密封带回实验室(运输时尽量避免翻压颠簸)。在室内,将土样按其结构纹理剥离成直径10 mm左右的土块,在此过程中要防止土块的外力形变,去除肉眼可见的有机残体后在通风阴凉处自然风干。
表1 试验处理方式
1.3.2 测定方法
采用湿筛测定方法[20]测定供试土样的各粒级团聚体(>2、0.25~2、0.053~0.25和<0.053 mm)含量,一般认为>0.25 mm为大团聚体[21]。利用传统测定方法[22]测定各粒级团聚体及土层中的有机碳、全氮含量。
1)不同粒级团聚体质量百分比[23]
式中A为某粒级团聚体的质量分数(%);G为该粒级团聚体的风干质量(g);T为团聚体总质量(g)。
2)平均重量直径(MWD)和几何平均直径(GMD)是表征土壤团聚体稳定性的重要指标,其值的大小在一定程度可以体现团聚体结构的团聚程度,MWD和GMD值越大,土壤团聚体的稳定性越高[23]。平均重量直径(MWD)[24],几何平均重量(GMD)[25]计算公式如下
式中MWD为平均重量直径(mm);GMD为几何平均直径(mm);W为各粒级团聚体的重量百分比(%);X为各粒级的平均直径(mm)。
3)不同粒级团聚体对土壤C、N的贡献率
不同粒级团聚体中C、N对土壤C、N的贡献率计算公式[26],如(4)所示
式中R为贡献率(%);AC表示某粒级团聚体C、N含量(g/kg);W为该粒级团聚体所占百分比(%);TC代表该层土壤C、N的含量(g/kg)。
采用Excel 2010对数据进行初步处理,DPS 7.05数据分析系统进行数据统计分析,SigmaPlot 12.0进行图表制作。方差分析采用新复极差法。
不同处理的土壤SOC与TN含量均呈现随土层加深而降低的总体趋势(图2)。NTS处理的SOC与TN含量表现出明显的表层富集,在0~5 cm土层显著高于其他处理,其顺序为NTS>RTS>CTS>CT(<0.05),而在5~30 cm土层NTS的碳氮含量更低。RTS处理的SOC和TN含量分别在10~30 cm和5~30 cm土层显著高于NTS、CTS与CT。
注:同一土层不同字母代表处理间差异达到显著性水平(P<0.05)。下同。
由表2可以看出,稻田在不同耕作方式下,团聚体组分的百分含量呈现出随粒径的减小而降低的趋势。在0~30 cm土层,不同处理团聚体均以>2 mm粒径为主,约占35.02%~64.44%,其次为0.25~2 mm粒径(23.39%~39.86%),均属于大团聚体(约占66.90%~87.82%),而<0.053 mm及0.053~0.25 mm团聚体含量较小(总体约占12.18%~33.10%)。
在>2 mm粒级中,NTS在5~30 cm土层均显著大于RTS(< 0.05),分别高12.90%(5~10 cm)、15.15%(10~20 cm)及20.47%(20~30 cm);CTS在5~20 cm显著低于NTS(< 0.05),NTS、RTS、CTS之间在0~5 cm不显著;CTS只在0~10 cm土层显著大于CT(< 0.05),综合来看,持续的秸秆还田能够显著增加0~10 cm土层的>2 mm团聚体比例,弱化不同耕法对土壤表层大团聚体的差异化影响,这可能与有机物长期输入促进土壤大团聚体形成,土壤碳固持量大有关。粒级0.25~2 mm范围,CTS在5~20 cm土层显著高于NTS和RTS(< 0.05);CTS在0~10 cm显著低于CT,低27.56%和12.01%,但在10~30 cm无显著差异。粒级0.053~0.25 mm中,RTS在0~5和10~30 cm土层中显著高于CTS,分别高43.67%(0~5 cm)、25.21%(10~20 cm)和22.81%(20~30 cm)。当粒径<0.053 mm时,NTS和CTS在20~30 cm土层显著低于RTS;CTS在5~10 cm土层显著低于CT,而在0~5及10~30 cm土层无显著性差异。综合来看,粒径<0.25 mm的团聚体,NTS在0~10 cm显著低于CT。因此,保护性耕作(免耕)+秸秆还田为土壤微团聚体向大团聚体转化提供了良好条件,尤其有利于提高土壤表层大团聚体占比。
表2 耕作方式对稻田土壤团聚体构成的影响
注:同土层同列不同小写字母分别表示差异显著(< 0.05),下同。
Note: Different lowercase letters in the same column of the same layer indicate significant difference at 0.05 level. The same below.
如图3,MWD与GMD表征的土壤团聚体稳定性具有一致性。在0~10 cm土层,秸秆还田处理(NTS、CTS、RTS)的团聚体稳定性均显著大于秸秆不还田处理(CT)(< 0.05),直观地反应出长期秸秆还田措施能够显著提高土壤表层(0~10 cm)团聚体的稳定性。而NTS在10~30 cm土层团聚体稳定性显著优于RTS (< 0.05),在5~20 cm土层显著优于CTS(< 0.05),而在0~5 cm,NTS、RTS、CTS之间的差异不显著,这可能与长期秸秆还田有关。综合来看,长期秸秆还田+保护性耕作(免耕)在改善耕层(至少0~20 cm)土壤团聚体稳定性方面具有显著的效果。值得注意的是,RTS在较深土层(尤其在20~30 cm)表现出显著较低的团聚体稳定性,这可能与不同耕作措施的土壤操作面深度差异有关。
团聚体碳含量表现出表层高,深层低,且同一土层碳向大团聚体集中的总体趋势。与此同时,不同耕作方式也表现出对碳分布的差异性影响。如图4,翻耕处理(尤其CT)在同一土层不同粒级之间以及同一粒级不同土层之间的团聚体碳分布差异相比其他处理更小。而NTS的团聚体碳分布差异较大,主要表现在NTS的碳向表层及大团聚体中相对集中。
团聚体氮含量的分布也呈现出与碳含量分布一致的趋势(图5),表层及粒级越大的团聚体中氮含量越高。CTS在0~20 cm土层各粒级团聚体N含量显著高于CT;在秸秆还田条件下,NTS在0~5 cm土层的各粒径团聚体氮含量均显著高于RTS和CTS(< 0.05),但CTS在5~20 cm土层要显著高于NTS和RTS(<0.05)。
图3 耕作方式对稻田土壤团聚体MWD与GMD的影响
由表3可以看出,长期采取秸秆还田措施下稻田各粒级团聚体对土壤总碳的贡献率大小依次为:>2 mm(44.56%~64.61%)> 0.25~2 mm(24.91%~39.20%)> 0.053~0.25 mm(5.32%~11.47%)≈<0.053 mm(4.05%~11.95%),而秸秆不还田处理下各粒级团聚体对土壤总碳的贡献率大小依次为:>2 mm(38.95%~53.83%)> 0.25~2 mm(30.69%~43.34%)> 0.053~0.25 mm(7.55%~10.24%)> < 0.053 mm(7.47%~7.95%),秸秆还田使>2 mm团聚体对土壤碳的贡献增加,相比于秸秆不还田,>2 mm团聚体贡献率平均增加8.20个百分点,而0.25~2 mm及0.053~0.25 mm团聚体的贡献率则平均分别降低4.96和0.49个百分点。在秸秆还田处理中,NTS在0~20 cm的>2 mm团聚体对土壤碳的贡献率显著大于其他处理(<0.05),其他粒级团聚体的贡献率相对其他处理较低;在20~30 cm,NTS土壤碳含量较低,且>2 mm团聚体贡献率也低于其他处理。
a. >2 mmb. 0.25~2 mmc. 0.053~0.25 mmd. <0.053 mm
a. >2 mmb. 0.25~2 mmc. 0.053~0.25 mmd. <0.053 mm
各粒级团聚体对土壤N的贡献与土壤C的规律类似,>2 mm团聚体的贡献率随土层的加深有降低的趋势。秸秆还田使>2 mm团聚体对土壤N的贡献率增加,相比于秸秆不还田,>2 mm团聚体贡献率平均增加7.35个百分点,而0.25~2 mm团聚体的贡献率则平均降低4.84个百分点。
总体来看,不同耕作方式下稻田土壤中大团聚体对土壤C、N的贡献率更高(分别为76.58%~90.62%、72.28%~89.76%)。秸秆还田能够显著增加>2 mm团聚体的比重,从而增加大团聚体对土壤养分的贡献,但是这种增加是以降低0.25~2 mm团聚体贡献率为基础的。同样,免耕相对其他耕作措施,也起到了在0~20 cm土层增加大团聚体贡献率的作用。总的来看,小团聚体(<0.25 mm)对于土壤C、N的贡献影响不大,且相对来看贡献率波动较小。
进一步分析土壤C、N与团聚体稳定性的关系,发现SOC与GMD(2=0.31,< 0.05),TN与GMD(2=0.33,<0.05)均成显著的正相关关系(图6)。因此,为了改善土壤团聚体稳定性就要通过提高稻田土壤C、N含量,稳定和增加土壤大团聚体的比例,进而提高稻田土壤团聚体对C、N的固持和保护能力。
表3 不同耕作方式下团聚体对土壤C、N的贡献率
a. 土壤SOC与GMD的回归分析b. 土壤TN与GMD的回归分析 a. Regression analysis between SOC and GMDb. Regression analysis between TN and GMD
图6 土壤SOC、TN与GMD的回归分析
Fig.6 Regression analysis between SOC, TN and GMD (geometric mean diameter)
土壤团聚体稳定性的高低直接反应了土壤是否退化[27]以及养分持续供给能力的强弱。本文认为更多的大团聚体(尤其>2 mm)可以提高土壤结构的稳定性。对于大团聚体的形成和稳定,土壤粘合剂(如有机碳、微生物和土壤蛋白等)起着重要作用。研究表明有机质的投入为微生物生产土壤粘合剂提供了碳源,有助于土壤大团聚体的形成[28],这与本研究的结果一致,连续的秸秆还田显著增加0~10 cm土层的>2 mm团聚体比例,并且GMD与MWD均显著高于秸秆不还田处理。本研究证实团聚体C、N之间存在极显著的正相关关系(2=0.99,<0.000 1),这说明土壤团聚体TN的变化趋势与团聚体SOC类似,土壤团聚体碳氮的固存存在协同作用[29]。有研究表明TN主要存在于土壤细黏粒或黏粒上,对土壤团聚体的形成具有较大影响[30],并且土壤中95%的TN均以有机态存在,较高的碳氮含量依靠有机−无机胶结作用促进了土壤团聚体的稳定性[31]。此外,影响团聚体大小分布和稳定性的另一个因素是耕作措施。不同粒级团聚体的形成和周转对农艺措施和土壤深度有不同的响应[32],已有研究认为耕作能够破化土壤大团聚体内部结构,释放被团聚体固持的碳,从而降低了土壤结构的稳定性[33]。在0~5 cm土层,秸秆还田处理(NTS、RTS及CTS)的团聚体稳定性显著高于秸秆不还田(CT)(<0.05),而在秸秆还田处理之间并没有因为不同的耕作措施而产生显著差异。这说明秸秆还田是影响土壤结构稳定性的主要因素。在5~30 cm土层,秸秆还田处理之间的团聚体稳定性出现显著不同,则是由于耕作对团聚体稳定性破坏程度的差异,相比于翻耕、旋耕,免耕一方面有助于土壤表层碳的积累,另一方面相对不受扰动的土体环境更有利于稳定的大团聚体形成[34]。因此,NTS在改善耕层(至少0~20 cm)土壤团聚体稳定性上具有显著的效果。
土壤团聚体C、N含量的增加主要是由于团聚体对C、N的固持速率大于团聚体C、N的矿化损失。有研究认为土壤团聚体的SOC含量和碳矿化能力随团聚体粒径的不同而不同[35]. 秸秆分解产生的碳源导致大团聚体结构中碳含量高于小团聚体[36-37]。N也有类似的规律。这与本文的结论一致,即不同耕作方式下稻田土壤中大团聚体对土壤C、N的贡献率更高(分别为76.58%~90.62%、72.28%~89.76%),其中>2 mm的团聚体的贡献率平均达C(52.12%),N(52.16%)。NTS引起的表层土壤C、N积累主要被大团聚体所固持,并且C、N在大团聚体中对外界化学、物理和生物条件造成的分解不那么敏感[38],而秸秆的投入提供了持续的C、N源也进一步促进了大团聚体的形成和稳定[39]。结果中各处理的<0.25 mm团聚体中的C、N含量较低,对土壤C、N贡献较小,这可能与小团聚体对C、N的固持和保护作用较差有关。
有研究表明耕作秸秆还田措施会产生交互效应,且在0~30cm土层均达到显著水平[15]。耕作和秸秆还田的交互效应普遍被认为是土壤在耕作措施下与秸秆混合后,土壤微生物作用而产生的一种综合生态效应[40]。未来的研究应更多地关注团聚体养分固持和稳定的微生物参与策略。土壤环境对微生物会产生不同的影响,因此,进一步研究耕作与秸秆还田措施下双季稻田土壤团聚体稳定性差异,还需要监测更多影响团聚体稳定的物理、化学以及生物指标的响应和变化过程,进而更全面、准确地揭示耕作管理下稻田土壤团聚体结构特征、变化规律及影响机制。
通过分析长期保护性耕作定位试验结果,评价了耕作方式对南方双季稻田土壤团聚体粒径分布、稳定性及相关碳氮含量影响的长期效应。主要研究结论如下:
1)不同耕作方式下,团聚体组分的百分含量随粒径的减小而降低。稻田土壤团聚体以>2 mm粒径为主(占35.02%~64.44%),<0.25 mm团聚体只占12.18%~33.10%。持续的秸秆还田能够显著增加0~10 cm土层的大团聚体比重。随着耕作强度的减弱,大团聚体含量有所提高。
2)不同耕作方式下,稻田土壤大团聚体对土壤C、N的贡献率高达76.58%~90.62%和72.28%~89.76%,其中>2 mm团聚体贡献率平均达C(52.12%)与N(52.16%)。NTS在0~20 cm的>2 mm团聚体对土壤C的贡献率显著大于其他处理。土壤团聚体N的变化与C类似,团聚体碳氮的固存存在协同关系。
3)长期采取免耕+秸秆还田显著提高了土壤表层C、N含量,并且土壤扰动少的特点促进了大团聚体的形成和稳定,对改善稻田耕层(尤其0~20 cm)土壤团聚体稳定性具有显著的效果。保护性耕作措施可能是实现南方双季稻田生态可持续发展的有效途径。
[1]Carter Martin R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions[J]. Agronomy Journal, 2002, 94(1): 38-47.
[2]Bronick C J, Lal R. Soil structure and management: A review[J]. Geoderma, 2005, 124(1/2): 3-22.
[3]Verhulst N, Govaerts B, Verachtert E, et al. Conservation agriculture, improving soil quality for sustainable production systems?[M]// Advances in Soil Science: Food Security and Soil Quality, CRC Press, 2010, 137-208.
[4]Haydu-Houdeshell Carrie-Ann, Graham Robert C, Hendrix Paul F, et al. Soil aggregate stability under chaparral species in Southern California[J]. Geoderma, 2018, 310: 201-208.
[5]Du Zhangliu, Ren Tusheng, Hu Chunsheng, et al. Soil aggregate stability and aggregate-associated carbon under different tillage systems in the North China Plain[J]. Journal of Integrative Agriculture, 2013, 12(11): 2114-2123.
[6]张迪,姜佰文,梁世鹏,等. 草甸黑土团聚体稳定性对耕作与炭基肥施用的响应[J]. 农业工程学报,2019,35(14):125-132. Zhang Di, Jiang Baiwen, Liang Shipeng, et al. Responsive of aggregate stability of meadow black soil to different tillage practices and carbon-based fertilizers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 125-132. (in Chinese with English abstract)
[7]窦森. 土壤团聚体中有机质研究进展[J]. 土壤学报,2011,48(2):412-418. Dou Sen. A review on organic matter in soil aggregates[J]. Acta Pedologica Sinica, 2011, 48(2): 412-418. (in Chinese with English abstract)
[8]张曼夏,季猛,李伟,等. 土地利用方式对土壤团聚体稳定性及其结合有机碳的影响[J]. 应用与环境生物学报,2013,19(4):598-604. Zhang Manxia, Ji Meng, Li Wei, et al. Effect of land use patterns on soil aggregate stability and aggregate-associated organic carbon[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(4): 598-604. (in Chinese with English abstract)
[9]Liu Yanyan, Gong Yanming, Wang Xin, et al. Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees[J]. Journal of Arid Land, 2013, 5(4): 480-487.
[10]Pirmoradian N, Sepaskhah A R, Hajabbasi M A. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments[J]. Biosystems Engineering, 2005, 90(2): 227-234.
[11]Bossuyt Heleen, Six Johan, Hendrix Paul F. Protection of soil carbon by microaggregates within earthworm casts[J]. Soil Biology and Biochemistry, 2005, 37(2): 251-258.
[12]Sheehy Jatta, Regina Kristiina, Alakukku Laura, et al. Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems[J]. Soil and Tillage Research, 2015, 150: 107-113.
[13]Kasper M, Buchan G D, Mentler A, et al. Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions[J]. Soil and Tillage Research, 2009, 105(2): 192-199.
[14]Kabiri Vida, Raiesi Fayez, Ghazavi Mohammad Ali. Six years of different tillage systems affected aggregate-associated SOM in a semi-arid loam soil from Central Iran[J]. Soil and Tillage Research, 2015, 154: 114-125.
[15]田慎重,王瑜,李娜,等. 耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响[J]. 生态学报,2013,33(22):7116-7124. Tian Shenzhong, Wang Yu, Li Na, et al. Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecologica Sinica, 2013, 33(22): 7116-7124. (in Chinese with English abstract)
[16]Chen Zhongdu, Ti Jinsong, Chen Fu. Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China[J]. Nutrient Cycling in Agroecosystems, 2017, 109(2): 103-114.
[17]王丽,李军,李娟,等. 轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响[J].应用生态学报,2014,25(3):759-768. Wang Li, Li Jun, Li Juan, et al. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 759-768. (in Chinese with English abstract)
[18]薛建福. 耕作措施对南方双季稻田碳、氮效应的影响[D]. 北京:中国农业大学,2015. Xue Jianfu. Effects of Tillage on Soil Carbon and Nitrogen in Double Paddy Cropping System of Southern China[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[19]Das Bappa, Chakraborty Debashis, Singh R, et al. Effect of integrated nutrient management practice on soil aggregate properties, its stability and aggregate-associated carbon content in an intensive rice-wheat system[J]. Soil and Tillage Research, 2014, 136: 9-18.
[20]Kemper W D, Rosenau R C. Aggregate stability and size distribution. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods[M]// Agronomy Monograph no. 9. Society of Agronomy/Soil Science Society of America, 1986: 425-442.
[21]Andruschkewitsch Rouven, Geisseler Daniel, Koch Heinz-Josef, et al. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials[J]. Geoderma, 2013, 192(1): 368-377.
[22]鲍士旦. 土壤农化分析(3版)[M]. 北京:中国农业出版社,2000.
[23]周虎,吕贻忠,杨志臣,等. 保护性耕作对华北平原土壤团聚体特征的影响[J]. 中国农业科学,2007,40(9):1973-1979. Zhou Hu, Lv Yizhong, Yang Zhichen, et al. Effects of conservation tillage on soil aggregates in Huabei Plain, China[J]. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979. (in Chinese with English abstract)
[24]王小红,杨智杰,刘小飞,等. 中亚热带山区土壤不同形态铁铝氧化物对团聚体稳定性的影响[J]. 生态学报,2016,36(9):2588-2596. Wang Xiaohong, Yang Zhijie, Liu Xiaofei, et al. Effects of different forms of Fe and Al oxides on soil aggregate stability in mid-subtropical mountainous area of Southern China[J]. Acta Ecologica Sinica, 2016, 36(9): 2588-2596. (in Chinese with English abstract)
[25]Barreto Renata C, Madari Beata E, Maddock John E L, et al. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2in the surface layer of a Rhodic Ferralsol in Southern Brazil[J]. Agriculture Ecosystems and Environment, 2009, 132(3/4): 243-251.
[26]王艳玲,蒋发辉,徐江兵,等. 长期配施有机肥对旱地红壤微团聚体中有机碳含量的影响[J]. 土壤通报,2018,49(2):377-384. Wang Yanling, Jiang Fahui, Xu Jiangbing, et al. Micro-aggregate associated organic carbon in red soil as affected by long-term application of combined organic-inorganic fertilizers[J]. Chinese Journal of Soil Science, 2018, 49(2): 377-384. (in Chinese with English abstract)
[27]Barthès Bernard, Roose Eric. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002, 47(2): 133-149.
[28]Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103.
[29]谢钧宇,杨文静,强久次仁,等. 长期不同施肥下塿土有机碳和全氮在团聚体中的分布[J].植物营养与肥料学报,2015,21(6):1413-1422. Xie Junyu, Yang Wenjing, Qiang Jiuciren, et al. Distribution of soil organic carbon and nitrogen in water-stable aggregates of manurial loess soils under long-term various fertilization regimes[J]. Plant Nutrition and Fertilizer Science, 2015, 21(6): 1413-1422. (in Chinese with English abstract)
[30]魏朝富,谢德体,李保国. 土壤有机无机复合体的研究进展[J].地球科学进展,2003,18(2):221-227. Wei Chaofu, Xie Deti, Li Baoguo. Progress in research on soil organo-mineral complexes[J]. Advance in Earth Sciences, 2003, 18(2): 221-227. (in Chinese with English abstract)
[31]武均,蔡立群,齐鹏,等. 不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J]. 中国生态农业学报,2015,23(3):276-284. Wu Jun, Cai Liqun, Qi Peng, et al. Distribution characteristics of organic carbon and total nitrogen in dry farmland soil aggregates under different tillage methods in the Loess Plateau of central Gansu province[J]. Chinese Journal of Eco-Agriculture, 2015, 23(3): 276-284. (in Chinese with English abstract)
[32]Six J, Paustian K, Elliott E T, et al. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681-689.
[33]Ashagrie Y, Zech W, Guggenberger G, et al. Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia[J]. Soil and Tillage Research, 2007, 94(1): 101-108.
[34]Gale W J, Cambardella C A, Bailey T B. Root-derived carbon and the formation and stabilization of aggregates[J]. Soil Science Society of America Journal, 2000, 64(1): 201-207.
[35]Huang Xiaolei, Jiang Hong, Li Yong, et al. The role of poorly crystalline iron oxides in the stability of soil aggregate-associated organic carbon in a rice-wheat cropping system[J]. Geoderma, 2016, 279: 1-10.
[36]Mikha Maysoon M, Rice Charles W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen[J]. Soil Science Society of America Journal, 2004, 68(3): 809-816.
[37]Messiga Aimé J, Ziadi Noura, Angers Denis A, et al. Tillage practices of a clay loam soil affect soil aggregation and associated C and P concentrations[J]. Geoderma, 2011, 164(3): 225-231.
[38]O'Brien Sarah L, Jastrow Julie D. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands[J]. Soil Biology and Biochemistry, 2013, 61(6): 1-13.
[39]Zou C, Pearce R C, Grove J H, et al. No-tillage culture and nitrogen fertilizer management for burley tobacco production[J]. Journal of Agricultural Science, 2016, 155(4): 599-612.
[40]Freebairn D M, Loch R J, Silburn D M, et al. Soil erosion and soil conservation for Vertisols[J]. Developments in Soil Science, 1996, 24: 303-362.
Effects of long-term conservation tillage on soil aggregate stability and carbon and nitrogen in paddy field
Wang Xing, Qi Jianying, Jing Zhenhuan, Li Chao, Zhang Hailin※
(,,,,100193,)
Soil structure stability, aggregate-associated C and N play an important role in soil conservation and nutrient supply. Tillage practices can affect the soil aggregate stability and C and N distribution, thus affecting the farmland ecological security. To estimate the effects of tillage practices on soil aggregate stability and its C and N distribution of double paddy field in Southern China, a long-term field experiment initiated from 2005 with four treatments (no-till with residue retention, NTS), rotary tillage with residue retention, RTS), plow tillage with residue retention, CTS), and plow tillage with residue removed, CT)) was conducted in a double rice cropping system in Ningxiang, Hunan. After 12-years of the experiment, the soil water-stable aggregates, stability, and C, N concentration were determined from four soil depths of 0-5, 5-10, 10-20, and 20-30 cm. The results showed that there were significant positive correlations between soil C, N and aggregate stability (<0.05). The percentage of soil aggregate decreased with the particle size decreases in paddy fields. It mainly composed of macro-aggregate (>0.25 mm), accounting for 66.90%-87.82%, of which >2 mm part accounted for 35.02%-64.44% in 0-30 cm soil layers under different tillage practices. For >2 mm soil aggregate, NTS was significantly higher than RTS (<0.05) in the 5-30 cm soil layers.NTS was significantly higher than CTS at 5-20 cm (< 0.05), but NTS, RTS and CTS were not significant in the 0-5 cm soil layer. The <0.25 mm soil aggregate accounted for 12.18%-33.10% in 0-30 cm soil layers under different tillage practices. In terms of aggregate stability, NTS was significantly higher than RTS (10-30 cm) and CTS (5-20 cm), but NTS, RTS, and CTS were not significant in the 0-5 cm soil layer. The contribution rate of macro-aggregate to soil C, N in paddy fields were 76.58%-90.62% and 72.28%-89.76%, respectively, and the contribution rates of >2 mm aggregates to C and N were52.12% and 52.16%, respectively. Compared with straw removal, the contribution rate of >2 mm aggregate treated with straw returning to the soil C, N increased by 8.20 percentage point and 7.35 percentage point, while the contribution of 0.25-2 mm aggregate decreased by 4.96 percentage point and 4.84 percentage point, respectively. Further analysis of the relationship between soil C and N and aggregate stability showed that SOC and GMD (geometric mean diameter), TN and GMD were significantly positively correlated. Thus, straw returning was conducive to the transformation of micro-aggregate to macro-aggregate. Compared with CTS and RTS, NTS significantly increased the C, N content in soil surface and promoted the stable macro-aggregate formation, which had significant effects on improving aggregate stability in paddy fields (especially 0-20 cm) (<0.05). Therefore, no-till with residue retention is an effective measure to maintain and improve soil performance of the paddy field in Southern China.
soils; aggregate; tillage; straw-returning; soil carbon and nitrogen; double-cropping rice
王 兴,祁剑英,井震寰,李 超,张海林. 长期保护性耕作对稻田土壤团聚体稳定性和碳氮含量的影响[J]. 农业工程学报,2019,35(24):121-128. doi:10.11975/j.issn.1002-6819.2019.24.015 http://www.tcsae.org
Wang Xing, Qi Jianying, Jing Zhenhuan, Li Chao, Zhang Hailin. Effects of long-term conservation tillage on soil aggregate stability and carbon and nitrogen in paddy field [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 121-128. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.015 http://www.tcsae.org
2019-05-26
2019-09-19
公益性行业(农业)科研专项(201503136)
王 兴,博士生,研究方向为农田生态。Email:jiaxing0103@163.com
张海林,博士,教授,博士生导师,研究方向为保护性耕作与农田生态。Email:hailin@cau.edu.cn
10.11975/j.issn.1002-6819.2019.24.015
S343.1;S343.2
A
1002-6819(2019)-24-0121-08