张 旭,罗 震,毕 敬,张 禹
外加磁场对TA1工业纯钛电阻点焊连接质量的影响
张 旭1,罗 震1,毕 敬2,张 禹1
(1. 天津大学材料科学与工程学院,天津 300072;2. 天津航天长征火箭制造有限公司,天津 300462)
针对TA1工业纯钛在电阻点焊时极易与氧气发生反应而导致接头局部脆化的情况,引入了外加横向磁场以改善其电阻点焊接头的连接质量.实验使用材料为1mm厚的TA1工业纯钛薄板,在220kW的逆变直流电阻点焊设备上进行.电极采用端部直径为6mm的锥形电极头.外加磁场由一对环形钕铁硼永磁铁N40产生.上、下永磁体S极相对,沿电极臂中心线呈轴对称安装.上、下永磁体距两试件的接触面为9mm.以熔核尺寸和接头在拉剪测试中表现出的峰值载荷为指标,分析了外加横向磁场对TA1工业纯钛电阻点焊连接质量的影响.并且测量了点焊接头截面的显微硬度以判断熔核边缘的氧化程度.结果表明,在同等热输入前提下,外加磁场不影响TA1熔核内部的结晶形态,但能够有效增加熔核直径,改善TA1点焊接头的承载能力.并且在热输入较小的条件下,外加磁场对熔核直径生长的作用更明显.当接头熔核尺寸相近时,施加外部横向磁场的点焊过程所需热输入量更小.这也导致了在同等熔核尺寸和峰值载荷前提下,有外加磁场下的点焊接头断裂模式呈现对称纽扣断裂模式,无磁场的点焊接头呈现单侧纽扣断裂模式.同时外加磁场作用下的点焊接头拉伸断口的韧窝尺寸更大,表现出更好的塑韧性,这是因为较小的热输入能降低熔核边缘区域的氧化程度.
电阻点焊;外加磁场;工业纯钛;点焊质量
电阻点焊工艺因为具有效率高、成本低、易于实现自动化等优点,被广泛用于汽车与航天工业中薄板结构的连接[1].各类新型轻量化材料的工业化应用给这一传统连接工艺带来挑战.
有学者提出采用电磁搅拌技术改善新型难焊材料电阻点焊的加工质量.Watanabe等[2]研究表明外加磁场可以增大301不锈钢焊点熔核的直径.Shen 等[3]发现在DP590和DP780的电阻点焊工艺中,针对电极轴线施加横向恒定磁场能与焊接区电流发生交互作用,细化熔核区晶粒,并在同样焊接参数前提下增加熔核直径,实现减小能耗、提高连接质量的目的.Yao等[4]发现在镁合金电阻点焊过程中,施加磁场可以强化熔核局部强度,促进接头的纽扣断裂倾向性.张忠典等[5]发现外加磁场能够有效改善高强钢30CrMnSi的电阻点焊接头组织.
TA1工业纯钛因其具有较高的比强度和熔点高、韧性好、密度小、膨胀系数低等一系列优点,被广泛应用于航天航空类设备.红热、熔融状态的钛有很高的化学活性,极易与氧气发生反应,导致熔化焊接头局部脆化[6].
文中研究在TA1电阻点焊过程中引入外部横向磁场,研究了该措施对接头力学性能、熔核直径和接头失效模式的影响.
实验用材料为1mm厚的TA1工业纯钛薄板.试件尺寸为100mm×25mm,搭接长度为25mm.焊接实验在220kW的逆变直流电阻点焊设备上进行.电极采用端部直径为6mm的锥形电极头.
实验中的外加磁场由一对环形钕铁硼(NdFeB)永磁体N40产生,其性能参数见表1.实验装置示意如图1所示.上、下永磁体S极相对,沿电极臂中心线呈轴对称安装.上、下永磁体距两试件的接触面为9mm.实验工艺参数如表2所示,每组参数重复焊接5个试样.
实验前用砂纸打磨TA1板,以去除表面污垢,然后用酒精清洗,以保证焊接过程的稳定性.
焊后采用 CSS-44100 万能拉伸实验机对接头进行拉剪性能测试(拉伸速率为1.0mm/min),并测量破坏后试样的熔核直径.对接头截面进行维氏硬度测试,载荷为100,保压时间为15s.此外,使用日立S4800型场发射扫描电镜对拉剪实验断口形貌进行观察.
表1 N40型NdFeB永磁体性能参数和尺寸参数
Tab.1 Dimensions and performance parameters of N40 type NdFeB permanent magnet
图1 点焊外加磁场焊接示意
表2 实验参数
Tab.2 Experimental parameters
试验中典型的点焊接头宏观形貌如图2所示.在同样焊接参数(5kA,150ms)前提下,外加磁场能够促进点焊熔核直径的增加,同时熔核厚度方面几乎没有变化.这是因为在外加磁场的作用下,焊接电流会产生对液态金属沿熔核切线向外的洛伦兹力,从而迫使熔核内部的高温液态金属做高速离心运动,因此将更多热量带到熔核边缘,有利于熔核的生长[7].
与之前外加磁场点焊相关研究相比[8],TA1熔核内部结晶形态并未发生变化(两类试样熔核内部均为较粗大的柱状晶).这是由于文中研究所采用的焊接板材为纯金属,几乎不存在成分过冷.因此外加磁场对TA1点焊接头截面形貌的影响主要体现在熔核尺寸的增加.
图2 点焊接头宏观形貌
图3为在焊接电流为5kA、7kA条件下无磁场和外加磁场时熔核直径和峰值载荷随焊接时间的变化规律.
由图3可以看出在焊接电流较小、焊接时间较短时,外加磁场对熔核直径生长的作用更明显.这是因为当焊接电流较大、焊接时间较长时,焊接热输入非常充足,熔核已经能够充分生长,外磁场的施加难以使熔核进一步长大,因此其作用较弱.
而由于电阻点焊过程中峰值载荷与熔核直径呈正相关,因此外加磁场能够提高点焊接头的峰值载荷,同时在焊接电流较小和焊接时间较短时,外加磁场对峰值载荷提高的作用更加明显.此外,在同一个电流水平下,更短的焊接时间能使熔核直径生长至纽扣断裂所需尺寸.
对于电阻点焊接头,接头的峰值载荷与工件厚度、熔核直径以及母材的极限抗拉强度呈正比[9].因此,在此实验中,接头的峰值载荷与熔核直径直接有关.挑选两个具有相近水平的峰值载荷和熔核直径的点焊接头,其中一个无磁场,另一个有外加磁场,对其接头失效进行分析.所挑选的两个点焊接头的参数为无磁场、7kA、200ms和有磁场、5kA、250ms.
图3 无磁场和外加磁场下焊接时间对熔核直径和峰值载荷的影响
两个参数下点焊接头的力-位移曲线如图4所示,从图4中可以看出,虽然两者峰值载荷相当,但有外加磁场下的点焊接头的韧性比无磁场下的点焊接头更优.此外,有外加磁场下的点焊接头断裂模式呈现对称纽扣断裂模式,无磁场的点焊接头呈现单侧纽扣断裂模式.这是由于施加外部磁场的试样所需热输入量更小,从而使得熔核周边承力区工件氧化程度较小造成的.
图4 无磁场和外加磁场下的力-位移曲线
文中对两种典型的点焊接头的截面进行了显微硬度测量,结果如图5所示.有无外加磁场前提下,两试样熔核内部硬度水平一致;不施加磁场的试样熔核外侧区域出现了更显著的硬度提升.这是因为在无磁场条件下,需要更高的热输入才能使熔核尺寸达到与施加外部磁场试样的同等水平.在电极压力的作用下,熔核不与外界直接接触,而其周边的金属达到红热状态,发生氧化.热输入越高,熔核外侧金属被氧化范围就越大,氧化程度越严重.这表现为显微硬度的提升[10].
图5 无磁场和外加磁场下的熔核硬度
使用扫描电镜对拉伸断口进行观察,结果如图6所示.两类试样启裂处均表现为韧性断裂特征,然而不施加磁场时,断口呈现出的韧窝更细小.施加外部磁场时,断口的韧窝尺寸更大,因此说明该试样韧性相对较好[11].
图6 无磁场和外加磁场下的拉伸断口
(1) 在同等热输入的前提下,外加磁场可以增加TA1电阻点焊接头的熔核直径,改善点焊接头的承载能力.
(2) 当接头熔核尺寸相近时,施加外部横向磁场的点焊过程所需热输入量更小.
(3) 在同等熔核尺寸和峰值载荷前提下,外加磁场作用下的点焊接头也表现出更好的塑韧性.这是由于较小的热输入能降低近熔核区域的氧化程度.
[1] Zhang H,Senkara J. Resistance Welding:Fundamen-tals and Applications[M]. Florida:CRC Press,2012.
[2] Watanabe Y,Takeda T,Sato H. Effect of magnetic field on weld zone by spot-welding in stainless steel[J]. Transactions of the Iron & Steel Institute of Japan,2006,46(9):1292-1296.
[3] Shen Q,Li Y B,Lin Z Q,et al. Effect of external constant magnetic field on weld nugget of resistance spot welded dual-phase steel DP590[J]. IEEE Transactions on Magnetics,2011,47(10):4116-4119.
[4] Yao Q,Luo Z,Li Y,et al. Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld[J]. Materials & Design,2014,63(63):200-207.
[5] 张忠典,王亚荣,李双双. 外加径向恒定磁场改善高强钢点焊质量[C]// 第十一次全国焊接会议论文集(第1册). 上海,2005.
Zhang Z,Wang Y,Li S. Effect of external radial magnetic field on high strength steel resistance spot welding[C]// Proceedings of the 11th National Welding Conference(Vol.1). Shanghai,China,2005(in Chinese).
[6] 李 菊,关 桥,史耀武. 钛合金焊接过程应力应变特点分析[J]. 焊接学报,2010,31(3):53-56.
Li Ju,Guan Qiao,Shi Yaowu. Investigation on welding stress and strain of titanium alloy[J]. Transactions of the China Welding Institution,2010,31(3):53-56(in Chinese).
[7] 姚 杞,李 洋,罗 震,等. 永磁体磁场对铝合金电阻点焊力学性能及微观组织的影响[J]. 焊接学报,2016,37(4):52-56.
Yao Qi,Li Yang,Luo Zhen,et al. Impact of external magnetic field generated by permanent magnet on mechanical property and microstructure of aluminum alloy resistance spot weld[J]. Transactions of the China Welding Institution,2016,37(4):52-56(in Chinese).
[8] 沈 琦,李永兵,陈关龙,等. 永磁体磁场对双相高强钢电阻点焊质量的影响[J]. 焊接学报,2011,32(4):21-24.
Shen Qi,Li Yongbing,Chen Guanlong,et al. Impact of external magnetic field generated by permanent magnet on quality of dual phase high strength steel by resistance spot welding[J]. Transactions of the China Weld-
ing Institution,2011,32(4):21-24(in Chinese).
[9] Asme M. Ultimate strength and failure mechanism of resistance spot weld subjected to tensile,shear,or combined tensile/shear loads[J]. Journal of Engineering Materials & Technology,2003,125(2):125-132.
[10] Kaya Y,Kahraman N. The effects of electrode force,welding current and welding time on the resistance spot weldability of pure titanium[J]. International Journal of Advanced Manufacturing Technology,2012,60(1/2/3/4):127-134.
[11] 钟群鹏,赵子华. 断口学[M]. 北京:高等教育出版社,2006.
Zhong Qunpeng,Zhao Zihua. Fractography[M]. Beijing:Higher Education Press,2006(in Chinese).
Effect of External Magnetic Field on TA1 Resistance Spot Welding
Zhang Xu1,Luo Zhen1,Bi Jing2,Zhang Yu1
(1. School of Materials Science and Engineering,Tianjin University,Tianjin 300072,China;2. Tianjin Aerospace Long March Launch Vehicle Manufacturing Co.,Ltd.,Tianjin 300462,China)
Due to the easily oxidation of commercial pure titanium TA1 during resistance spot welding(RSW),which leads to embrittlement of the joints,external transverse magnetic field(EMF)is introduced to improve the quality of the joint.The materials used were 1 mm thick commercial pure titanium TA1.Welding was performed using a 220kW direct current resistance spot welding machine.Truncated-cone electrodes with a 6mm diameter tip end was used for the welding.The EMF was generated through two identical annular N40 type NdFeB permanent magnets mounted coaxially on electrode arms with opposite polarities.The two magnets were symmetrically located with their south poles(S)against each other.The distance between permanent magnet to origin was 9mm in this study.The effect of EMF on commercial pure titanium TA1 RSW is studied.Impacts of the EMF on the nugget size and peak load in tensile-shear tests have been systematically discussed.Besides,the microhardness of the spot welded joints was measured to determine the oxidation degree of the edge region of the nugget.The results show that the EMF doesn’t affect the crystal morphology of the joints,but improves the nugget diameter and tensile-shear peak load of the joints.Moreover,the effect of EMF on the improvement of nugget diameter is larger when the heat input is smaller.Besides,the heat-input of the RSW process with EMF is lower than its counterpart without EMF while in both situation the nugget sizes are similar to each other.The EMF can improve the plasticity of the RSW joint under the same nugget sizes and peak loads.And the joints with EMF exhibit symmetrical pull-out fracture mode and the joints without EMF exhibit unilateral pull-out fracture mode.This is because that the lower heat-input can reduce the oxidation degree of the edge region of the nugget.
resistance spot welding;external magnetic field;commercial pure titanium;spot weld quality
10.11784/tdxbz201807001
TG453.9
A
0493-2137(2019)05-0554-05
2018-07-03;
2018-08-29.
张旭(1994— ),男,硕士研究生,Zhangxutju16@163.com.
罗震,lz@tju.edu.cn.
(责任编辑:王新英)