高正睿 吴之涛 龚永福 杨克泽 马金慧 魏玉杰
[摘要]非酒精性脂肪肝(NAFLD)是全球最常见的肝脏疾病,通常与代谢综合征有关。自噬,一种由溶酶体介导的细胞内成分的降解过程。自噬在调控肝脏脂质代谢的过程中,转录因子EB(TFEB)、腺苷酸活化蛋白激酶(AMPK)/哺乳动物雷帕霉素靶蛋白(mTOR)、过氧化物酶体增殖剂激活受体α(PPARα)和法尼酯衍生物X受体(FXR)、细胞外信号调节激酶1/2(ERK1/2)、沉默信息调节因子3(SIRT3)等信号通路发挥了重要作用。近年来的研究表明,许多中药及其活性成分可以通过诱导自噬减轻肝细胞脂肪变性。本文对自噬调控NAFLD的分子机制及中药有效成分的干预作用进行了综述。
[关键词]自噬;非酒精性脂肪肝;中药;信号通路
[中图分类号] R575 [文献标识码] A [文章编号] 1674-4721(2019)11(a)-0021-06
Research progress of molecular mechanism of autophagy in regulating non-alcoholic fatty liver disease and analysis of the effect of active ingredients of traditional Chinese medicine on liver autophagy
GAO Zheng-rui1,2,3 WU Zhi-tao1,2,3 GONG Yong-fu1,2,3 YANG Ke-ze1,2,3 MA Jin-hui1,2,3 WEI Yu-jie1,2,3
1. Gansu Academy of Agri-engineering Technology, Gansu Province, Wuwei 733006, China; 2. Key Laboratory of the Special Medicine Source Plant for Germplasm Innovation and Safety Utilization in Gansu Province, Gansu Province, Wuwei 733006, China; 3. Hexi Comprehensive Experimental Station of Industrial System for Chinese Herbal Medicine, Gansu Province, Wuwei 733006, China
[Abstract] Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world, which is usually associated with metabolic syndrome. Autophagy, a lysosome-mediated degradation process of intracellular components. During the process of regulating liver lipid metabolism by autophagy, transcription factor EB (TFEB), adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), peroxisome proliferator-activated receptor α (PPARα), farnesoid X receptor (FXR), extracellular signal-regulated kinase 1/2 (ERK1/2) and silent information regulation 3 (SIRT3) play the important roles. Recent studies have shown that many traditional Chinese medicines and their active ingredients can alleviate hepatocyte steatosis by inducing autophagy. This article would review the molecular mechanism of autophagy regulating NAFLD and the intervention effect of active ingredients of traditional Chinese medicine.
[Key words] Autophagy; Non-alcoholic fatty liver disease; Traditional Chinese medicine; Signal pathway
非酒精性脂肪肝(non-alcoholic fatty liver disease,NAFLD)是一種与肥胖等代谢疾病密切相关的临床综合征,包括简单的脂肪变性、非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH)、肝纤维化和肝硬化[1]。自噬是一种高度保守的作用机制,在维持细胞、组织和机体稳态的过程中起着重要作用。许多证据表明,自噬功能缺陷与多种代谢疾病有关,包括肥胖、糖尿病、NAFLD等,自噬水平的降低,增加了NAFLD的患病风险[2],NAFLD患者的肝自噬受损。自噬能有效地降解正常细胞的代谢产物,这些产物在积累后会产生细胞毒性,如受损的线粒体和具有氧化还原活性的蛋白聚集体[3]。研究表明,自噬参与了细胞质脂滴的选择性降解,所以调节肝细胞自噬可以作为一种肝脏的保护机制来治疗NAFLD[4]。近年来,随着中药现代化步伐的加快,中药有效成分调控自噬的研究已取得了初步进展。本文旨在探讨自噬调节肝脏脂质的分子机制,以及中药有效成分对NAFLD的影响。
1自噬与NAFLD
1.1自噬的类型和过程
自噬是一种动态的分解过程,为维持细胞内物质的能量平衡提供了保障。根据细胞内含物运送方式的不同,自噬可分为三类:巨自噬(macroautophagy)、微自噬(microautophagy)、分子伴侣介导的自噬(chaperon-mediated autophagy,CMA),其中最常见的是巨自噬[5],巨自噬也是调节NAFLD的主要自噬类型。
保守的代谢传感器哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)和腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)是自噬的主要调控因子,mTOR为抑制因子,AMPK为激活因子。自噬的过程分为5个连续的步骤:分隔膜的形成、分隔膜的延伸、自噬体的形成、自噬溶酶体的形成、自噬溶酶体的降解。这些步骤相应的受到自噬相关蛋白(autophagy-related proteins,ATGs)的调控,ATGs组装成了多种复合物:UNC-51样激酶1(UNC-51-like kinase1,ULK1)复合物、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)复合物和磷脂酰肌醇-3-磷酸(phosphatidylinositol-3-phosphate,PI3P)复合物,这些复合物诱导了自噬体、ATG12和微管相关蛋白1轻链3(microtubule associated protein 1 light chain 3,LC3)共轭系统的形成。在ATG12共轭系统中,ATG12-ATG5-ATG16L1复合物促进了LC3共轭系统的形成,LC3在蛋白酶ATG4的作用下形成LC3-Ⅰ,LC3-Ⅰ与磷脂酰乙醇胺(phosphatidylethanolamine,PE)结合形成LC3-Ⅱ[6]。随着自噬体被密封,隔离的胞浆物质被自噬溶酶体所降解[7]。降解后,生成的氨基酸、脂类和碳水化合物通过转运蛋白和渗透酶到达细胞质,实现了细胞内物质的循环利用[8](图1)。
1.2脂质自噬与NAFLD
NAFLD的特点是肝脏内异常聚集了大量的脂滴,这可导致肝脏炎症和代谢紊乱[9]。脂滴可以储存细胞内的游离脂肪酸和三酰甘油,在营养缺乏时期提供了一种快速获取能量的途径[10]。肝脏脂肪变性会通过氧化过多的脂质对肝脏造成损伤,限制脂滴的存储可以防止NAFLD引起的肝细胞损伤[11]。脂质自噬是细胞质内脂滴的降解过程,在营养限制的情况下,脂滴被自噬体吞噬,在溶酶体中被酸性脂肪酶降解[12],脂质自噬所分解的脂质数量随着细胞外营养物质的供应情况而变化[13]。在体外培养的肝细胞中,对自噬的抑制并不影响脂质的形成和分泌,但会导致细胞内脂质的显著堆积,并使β-氧化受到抑制。敲除小鼠肝脏中一个重要的自噬基因ATG7,表现出三酰甘油和胆固醇的大量积累[14],表明自噬功能发生障碍会使肝脏脂质过度堆积,从而导致NAFLD的发生[15]。
2自噬调控NAFLD的作用机制
2.1 TFEB信号途径
转录因子TFEB(transcription factor EB)是螺旋-环-螺旋亮氨酸拉链类转录因子中的MiTF/TFE(microphthalmia-transcription factor E)家族成员之一,在细胞器的起源和细胞代谢中起着关键作用[16]。mTOR是细胞生长和代谢的关键调节器,在营养缺乏时mTOR被迅速抑制,从而激活自噬[17]。TFEB通过调节溶酶体和自噬相关基因的表达,在诱导自噬的过程中发挥了重要作用。TFEB的亚细胞定位由mTOR激酶复合物介导的磷酸化调节,饮食限制可以使TFEB从细胞质转移到细胞核,从而发挥其功能[18]。研究表明,在高脂饮食诱导的小鼠模型中,过表达肝细胞中的TFEB可以激活自噬,增强脂质分解的能力,提高肝脏中溶酶体酶的活性[19-20]。Kim等[21]发现,在NAFLD患者的肝脏中,肝细胞核中的TFEB表达水平降低。依泽替米贝(Ezetimibe)通过激活AMPK使TFEB转移到细胞核,这条途径与独立于mTOR信号的MAPK/ERK通路有关,TFEB进入细胞核增强了自噬标志蛋白LC3的表达,减轻了小鼠肝脏的脂肪变性。这些结果说明,增強肝脏TFEB的水平可以诱导肝细胞自噬,有效改善肝脏的脂肪变性。
2.2 AMPK/mTOR信号途径
AMPK是细胞和生物体代谢的一个主要调节因子,在能量水平下降时的适应性响应中起着至关重要的作用[22],AMPK会随着细胞内ATP水平的降低而被激活[23]。AMPK可以通过下调mTOR的表达水平,从而激活自噬。He等[24]发现,胰高血糖素样肽-1 (glucagon-likepeptide1,GLP-1)类似物利拉鲁肽通过增强肝脏中P-AMPK的表达,降低P-mTOR的表达,增强了自噬蛋白LC3的表达,改善了肝细胞脂肪变性。有研究表明,在营养限制的情况下,转化生长因子-β活化激酶1(TGF-β activated kinase 1,TAK1)通过激活AMPK并抑制mTOR诱导自噬,以防止肝细胞中脂质过多的积累[25]。Liu等[26]发现Ⅲ型纤连蛋白组件包含蛋白5(fibronectin type Ⅲ domaincontaining protein 5,FNDC5)可以通过AMPK/mTOR信号诱导自噬和脂肪酸氧化,从而使肝脏脂质积累减少。这些研究结果说明调控AMPK/mTOR信号可以诱导肝细胞自噬,减轻肝脏脂肪变性。
2.3 PPARα和FXR信号途径
过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated receptor α,PPARα)是一种配体激活的转录因子,属于核受体亚家族成员,在肝脏等脂代谢活跃的组织中高度表达。在NAFLD的临床前模型中,激活PPARα可改善肝脏的脂肪变性、炎症和纤维化,因此被作为潜在的治疗靶点[27]。法尼酯衍生物X受体(farnesoid X receptor,FXR)也是肝脏代谢中重要的转录调节因子。Lee等[28]发现,PPARα和FXR共同调控小鼠肝脏自噬过程。在禁食和正常喂食的小鼠肝脏中,PPARα和FXR分别被激活。药理性激活PPARα解除了正常喂食对自噬的抑制作用,诱导了脂质的降解,FXR的药理激活强烈抑制了禁食诱导的自噬现象,进一步研究发现,PPARa和FXR竞争性的与自噬基因启动子位点结合,产生不同的调节结果。Seok等[29]发现,在肝细胞中,FXR通过与环磷酸腺苷反应元件结合蛋白(cAMP response element binding protein,CREB)结合,破坏了CREB-CREB转录共激活因子2(CREB regulated transcription coactivator 2,CRTC2)复合物,导致细胞核中CRTC2水平降低,抑制了自噬。这些研究表明,激活PPARα和抑制FXR的活性可以促进肝细胞自噬,缓解肝脏脂肪变性。
2.4 ERK1/2信号途径
细胞外信号调节激酶1/2(extracellular signal-regulated kinase 1/2,ERK1/2)参与调控多种细胞代谢进程,研究表明,ERK信号可以调节自噬和溶酶体相关基因的表达[30]。Xiao等[31]发现,ERK1/2在瘦素受体缺乏(db/db)小鼠的肝臟中表达降低。腺病毒激活ERK1/2上游的调节器蛋白激酶1(mitogen extracellular kinase1,MEK1),增强了脂肪酸氧化和三酰甘油相关基因的表达,明显改善了db/db小鼠的肝脏脂肪变性,进一步研究发现,ERK1/2通过ATG7激活肝细胞自噬从而减轻db/db小鼠肝脏的脂肪沉积,ERK1/2对ATG7的调控依赖于p38信号途径。这些研究结果说明,激活肝脏ERK1/2通路可以诱导肝细胞自噬,改善NAFLD的表型。
2.5 SIRT3信号途径
沉默信息调节因子3(silent information regulation 3,SIRT3)是一种烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)依赖的去乙酰化酶,属于沉默信息调节因子2(SIRT2)相关酶(silent information regulator 2 related enzymes,Sirtuin)家族成员之一。在肝脏中,SIRT3可以调节线粒体功能并特异性调控参与脂肪酸氧化、氧化磷酸化、酮体合成和尿素循环的蛋白质的酶活性[32]。研究发现,在NAFLD小鼠模型中,自噬水平在SIRT3敲除小鼠的肝脏中明显增强,而在肝脏中过表达SIRT3降低了自噬的水平,进一步研究发现,SIRT3过表达导致锰超氧化物歧化酶(manganese superoxide dismutase,MnSOD)的去乙酰化和活化,耗尽了细胞内的超氧化物,使AMPK被抑制,从而激活mTOR,最终导致自噬被抑制,这表明抑制SIRT3过度活化是治疗NAFLD等代谢疾病的潜在靶点[33]。
3 中药有效成分对肝脏自噬的干预作用
一些研究表明,许多中药活性成分通过激活自噬改善了NAFLD的症状。小檗碱(berberine)是从黄连(Coptis chinensis)中提取的药用生物碱,具有改善葡萄糖耐受性、降低血脂等作用[34],研究表明,给野生型小鼠每天5 mg/kg注射小檗碱共5周,肝细胞内甘油三酯的水平显著降低,进一步实验发现,小檗碱是通过增加肝脏沉默信息调节因子1(silent information regulation 1,SIRT1)的乙酰化活性,并以一种依赖ATG5的方式诱导自噬,改善肝脏脂肪变性[35]。He等[36]发现,小檗碱通过ERK介导的mTOR信号途径诱导肝细胞自噬,减少了肝脏中脂质的积累。
白藜芦醇(resveratrol)是一种多元酚类物质,存在于多种药用植物中[37]。Zhang等[38]发现,白藜芦醇可以通过cAMP-PRKA-AMPK-SIRT1信号通路诱导肝细胞发生自噬,在体内和体外实验中都减轻了肝脏脂肪变性。Ji等[39]发现,对于蛋氨酸-胆碱缺乏(MCD)饲料诱导的NASH小鼠模型,白藜芦醇能明显增加肝脏细胞AML12中LC3-Ⅱ的表达,增强细胞自噬水平,缓解肝脏脂质沉积和炎症。
芒果苷(mangiferin)主要存在于芒果(Mangifera indica)叶和知母(Anemarrhena asphodeloides)根当中,具有调节脂质代谢的作用[40]。Wang等[41]发现,对于高脂饮食诱导的NAFLD小鼠模型,在小鼠腹腔注射芒果苷12周后,降低了小鼠体重和肝脏中三酰甘油和总胆固醇的水平,进一步研究发现,芒果苷通过AMPK/mTOR信号途径激活了自噬,缓解了肝脏中脂质的累积。
橄榄苦苷(oleuropein)是从橄榄叶中提取的一种酚类化合物[42],给C57BL/6J肥胖模型小鼠灌胃3%橄榄苦苷共8周后,橄榄苦苷上调了Ser555位点ULK1的磷酸化水平,从而诱导了肝细胞自噬,减轻了肝脏脂肪变性,这表明橄榄苦苷是一种通过靶向激活自噬来改善肝脂肪变性的潜在药物[43]。
Huang等[44]发现,给瘦素受体缺乏(db/db)的小鼠每天10 mg/kg注射人参皂苷Rb2(ginsenoside Rb2)共4周,诱导了SIRT1和AMPK表达上调,恢复了肝脏自噬,显著提高了肥胖db/db小鼠的葡萄糖耐受能力,减少了脂质的累积。
Zhong等[45]发现,黄兰(Michelia champaca)活性成分木香内酯(micheliolide)通过上调PPARγ的表达水平,抑制核因子Kappa B(nuclear factor-kappa B,NF-κB)介导的炎症,激活AMPK/mTOR介导的自噬,改善了肝脏脂肪变性。
泽泻醇A-24-醋酸酯(Alisol A-24-acetate,AA)是从中药泽泻(Rhizoma Alismatis)中提取的一种三萜类化合物,Wu等[46]发现,对于MCD饮食诱导的NASH小鼠模型,AA通过AMPK/mTOR途径抑制了氧化应激损伤,增强了自噬蛋白LC3-Ⅱ的水平,降低了自噬底物蛋白P62的水平,改善了肝脏脂质累积和炎症。
当归多糖(Angelica sinensis polysaccharide,ASP)是从当归根中分离出的药用成分,Wang等[47]发现,ASP降低了肥胖小鼠肝脏中脂质的积累,减轻了肝脏脂肪变性。此外,ASP可以显著增加自噬蛋白LC3-Ⅱ的表达水平,诱导肝细胞发生自噬,这一降脂作用与激活SIRT1-AMPK信号途径有关[48]。
木通皂苷D(Akebia Saponin D,ASD)是从川续断(Dipsacus asper Wall)根茎中提取的三萜皂苷类化合物,Gong等[49]发现,对于瘦素受体缺乏的肥胖小鼠,经过ASD干预后,肝脏中血糖水平降低,自噬蛋白LC3-Ⅱ的表达水平升高,从而减轻了肝脏中脂质的累积,有效缓解了肝脏脂肪变性。
降脂颗粒是一种临床常用的治疗NAFLD的中药配方,由绞股蓝、丹参、虎杖、茵陈蒿、荷叶组成[50]。降脂颗粒能显著缓解棕榈酸诱导的肝细胞功能障碍和脂滴积累,进一步研究发现,降脂颗粒通过抑制mTOR信号诱导自噬,改善了NAFLD的相关症状[51]。
4小结
在自噬调节肝脏脂質变性的过程中,TFEB、AMPK/mTOR、PPARs和FXR、ERK1/2、SIRT3等信号途径发挥了关键作用。近年来的研究表明,自噬可以作为治疗NAFLD的有效靶点,一些中药及其活性成分可以通过诱导自噬减轻NAFLD的相关症状,体现了中药在改善NAFLD等代谢疾病方面的优势。随着对自噬调节机制的深入研究,进一步阐明中药诱导自噬的信号通路,将为NAFLD等代谢疾病的防治提供新的思路。
[参考文献]
[1]Younossi ZM,Loomba R,Anstee QM,et al.Diagnostic modalities for nonalcoholic fatty liver disease,nonalcoholic steatohepatitis,and associated fibrosis[J].Hepatology,2018,68(1):349-360.
[2]Levine B,Kroemer G.Biological functions of autophagy genes:a disease perspective[J].Cell,2019,176(1-2):11-42.
[3]Galluzzi L,Bravo-San Pedro JM,Levine B,et al.Pharmacological modulation of autophagy:therapeutic potential and persisting obstacles[J].Nat Rev Drug Discov,2017,16(7):487-511.
[4]Li Y,Zong WX,Ding WX.Recycling the danger via lipid droplet biogenesis after autophagy[J].Autophagy,2017,13(11):1995-1997.
[5]Mizushima N,Komatsu M.Autophagy:renovation of cells and tissues[J].Cell,2011,147(4):728-741.
[6]Hansen M,Rubinsztein DC,Walker DW.Autophagy as a promoter of longevity:insights from model organisms[J].Nat Rev Mol Cell Biol,2018,19(9):579-593.
[7]Leidal AM,Levine B,Debnath J.Autophagy and the cell biology of age-related disease[J].Nat Cell Biol,2018,20(12):1338-1348.
[8]Madrigal-Matute J,Cuervo AM.Regulation of Liver Metabolism by Autophagy[J].Gastroenterology,2016,150(2):328-339.
[9]Goh VJ,Silver DL.The lipid droplet as a potential therapeutic target in NAFLD[J].Semin Liver Dis,2013,33(4):312-320.
[10]Nguyen TB,Olzmann JA.Lipid droplets and lipotoxicity during autophagy[J].Autophagy,2017,13(11):2002-2003.
[11]Dong H,Czaja MJ.Regulation of lipid droplets by autophagy[J].Trends Endocrinol Metab,2011,22(6):234-240.
[12]Carmona-Gutierrez D,Zimmermann A,Madeo F.A molecular mechanism for lipophagy regulation in the liver[J].Hepatology,2015,61(6):1781-1783.
[13]Liu K,Czaja MJ.Regulation of lipid stores and metabolism by lipophagy[J].Cell Death Differ,2013,20(1):3-11.
[14]Singh R,Cuervo AM.Autophagy in the cellular energetic balance[J].Cell Metab,2011,13(5):495-504.
[15]Zhang Z,Yao Z,Chen Y,et al.Lipophagy and liver disease:New perspectives to better understanding and therapy[J].Biomed Pharmacother,2018,97:339-348.
[16]Napolitano G,Esposito A,Choi H,et al.mTOR-dependent phosphorylation controls TFEB nuclear export[J].Nat Commun,2018,9(1):1-10.
[17]Yu L,McPhee CK,Zheng L,et al.Termination of autophagy and reformation of lysosomes regulated by mTOR[J].Nature,2010,465(7300):942-946.
[18]Medina DL,Ballabio A.Lysosomal calcium regulates autophagy[J].Autophagy,2015,11(6):970-971.
[19]Settembre C,De Cegli R,Mansueto G,et al.TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop[J].Nat Cell Biol,2013,15(6):647-658.
[20]Zhang H,Yan S,Khambu B,et al.Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy,steatosis and liver injury in long-term nutrient oversupply[J].Autophagy,2018,14(10):1779-1795.
[21]Kim SH,Kim G,Han DH,et al.Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition[J].Autophagy,2017,13(10):1767-1781.
[22]Zhang CS,Lin SC.AMPK promotes autophagy by facilitating mitochondrial fission[J].Cell Metab,2016,23(3):399-401.
[23]Mihaylova MM,Shaw RJ.The AMPK signalling pathway coordinates cell growth,autophagy and metabolism[J].Nat Cell Biol,2011,13(9):1016-1023.
[24]He Q,Sha S,Sun L,et al.GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway[J].Biochem Biophys Res Commun,2016,476(4):196-203.
[25]Seki E.TAK1-dependent autophagy:A suppressor of fatty liver disease and hepatic oncogenesis[J].Mol Cell Oncol,2014,1(4):1-3.
[26]Liu TY,Xiong XQ,Ren XS,et al.FNDC5 alleviates hepatosteatosis by restoring AMPK/mTOR-Mediated autophagy,fatty acid oxidation,and lipogenesis in mice[J].Diabetes,2016,65(11):3262-3275.
[27]Pawlak M,Lefebvre P,Staels B.Molecular mechanism of PPARalpha action and its impact on lipid metabolism,inflammation and fibrosis in non-alcoholic fatty liver disease[J].J Hepatol,2015,62(3):720-733.
[28]Lee JM,Wagner M,Xiao R,et al.Nutrient-sensing nuclear receptors coordinate autophagy[J].Nature,2014,516(7529):112-115.
[29]Seok S,Fu T,Choi SE,et al.Transcriptional regulation of autophagy by an FXR-CREB axis[J].Nature,2014,516(7529):108-111.
[30]Settembre C,Di Malta C,Polito VA,et al.TFEB links autophagy to lysosomal biogenesis[J].Science,2011,332(6036):1429-1433.
[31]Xiao Y,Liu H,Yu J,et al.Activation of ERK1/2 Ameliorates Liver Steatosis in Leptin Receptor-Deficient (db/db) Mice via Stimulating ATG7-Dependent Autophagy[J].Diabetes,2016,65(2):393-405.
[32]Dittenhafer-Reed KE,Richards AL,Fan J,et al.SIRT3 mediates multi-tissue coupling for metabolic fuel switching[J].Cell Metab,2015,21(4):637-646.
[33]Li S,Dou X,Ning H,et al.Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity[J].Hepatology,2017,66(3):936-952.
[34]Li XY,Zhao ZX,Huang M,et al.Effect of Berberine on promoting the excretion of cholesterol in high-fat diet-induced hyperlipidemic hamsters[J].J Transl Med,2015,13:1-9.
[35]Sun Y,Xia M,Yan H,et al.Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21[J].Br J Pharmacol,2018,175(2):374-387.
[36]He Q,Mei D,Sha S,et al.ERK-dependent mTOR pathway is involved in berberine-induced autophagy in hepatic steatosis[J].J Mol Endocrinol,2016,57(4):251-260.
[37]Yu YH,Chen HA,Chen PS,et al.MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol[J].Oncogene,2013,32(4):431-443.
[38]Zhang Y,Chen ML,Zhou Y,et al.Resveratrol improves hepatic steatosis by inducing autophagy through the cAMP signaling pathway[J].Mol Nutr Food Res,2015,59(8):1443-1457.
[39]Ji G,Wang Y,Deng Y,et al.Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy[J].Lipids Health Dis,2015,14:1-9.
[40]Li J,Liu M,Yu H,et al.Mangiferin improves hepatic lipid metabolism mainly through its metabolite-norathyriol by modulating SIRT-1/AMPK/SREBP-1c signaling[J].Front Pharmacol,2018,9:1-13.
[41]Wang H,Zhu YY,Wang L,et al.Mangiferin ameliorates fatty liver via modulation of autophagy and inflammation in high-fat-diet induced mice[J].Biomed Pharmacother,2017, 96:328-335.
[42]Shi C,Chen X,Liu Z,et al.Oleuropein protects L-02 cells against H2O2-induced oxidative stress by increasing SOD1,GPx1 and CAT expression[J].Biomed Pharmacother,2017,85:740-748.
[43]Porcu C,Sideri S,Martini M,et al.Oleuropein induces AMPK-Dependent autophagy in NAFLD mice,regardless of the gender[J].Int J Mol Sci,2018,19(12):1-12.
[44]Huang Q,Wang T,Yang L,et al.Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of Sirt1 and activation of AMPK[J].Int J Mol Sci,2017,18(5):1-15.
[45]Zhong J,Gong W,Chen J,et al.Micheliolide alleviates hepatic steatosis in db/db mice by inhibiting inflammation and promoting autophagy via PPAR-gamma-mediated NF-small ka,CyrillicB and AMPK/mTOR signaling[J].Int Immunopharmacol,2018,59:197-208.
[46]Wu C,Jing M,Yang L,et al.Alisol A 24-acetate ameliorates nonalcoholic steatohepatitis by inhibiting oxidative stress and stimulating autophagy through the AMPK/mTOR pathway[J].Chem Biol Interact,2018,291:111-119.
[47]Wang K,Cao P,Wang H,et al.Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice[J].Sci Rep,2016,6:1-11.
[48]曹鵬.当归多糖治疗代谢综合征相关疾病的作用及机制研究[D].武汉:华中科技大学,2017.
[49]Gong LL,Li GR,Zhang W,et al.Akebia Saponin D decreases hepatic steatosis through autophagy modulation[J].J Pharmacol Exp Ther,2016,359(3):392-400.
[50]Zheng YY,Wang M,Shu XB,et al.Autophagy activation by Jiang Zhi Granule protects against metabolic stress-induced hepatocyte injury[J].World J Gastroenterol,2018,24(9):992-1003.
[51]Zheng Y,Wang M,Zheng P,et al.Systems pharmacology-based exploration reveals mechanisms of anti-steatotic effects of Jiang Zhi Granule on non-alcoholic fatty liver disease[J].Sci Rep,2018,8(1):1-12.
(收稿日期:2019-04-30 本文编辑:孟庆卿)