王树平,王浩森,沈文梅
(河北建筑工程学院 数理系, 河北 张家口075000)
在电动力学的静电学中,带电细圆环是一个很重要的物理模型,关于其电势问题,因物理图像清晰、求解方法多样,文献[1-3]等曾有讨论.基于此本文提出带电细圆环和介质球系统的电势分布的求解方法,即在球坐标系中,利用叠加原理和拉普拉斯方程,得到带电细圆环和均匀介质球系统电势分布的解析式;用Matlab软件绘制等势线;最后通过带电细圆环和均匀介质球系统的电势解析式推出了介质球球心、远区、系统轴线上以及带电细圆环和导体球系统的电势分布.
用本文的方法易求解一类具有轴对称的静电场或静磁场系统的电势或磁矢势,如带电圆环和均匀介质球壳系统的电势、圆电流和磁介质球或磁介质球壳系统的磁矢势、带电圆环和无限长介质圆柱系统的电势、圆电流和无限长磁介质圆柱系统的磁矢势.用该方法求解此类物理问题具有物理图像清晰、易被学生接受等优点,同时有利于提高学生利用特殊函数求解相关物理问题的能力.
如图1所示,真空中有一半径为a,带电量为q的细圆环,环内有一半径为R,介电常量为ε的介质球,球心和圆环中心重合于点o.由文献[1]知,在图2所示的球坐标系中,带电细圆环在以a为半径的球面内的电介质及球面外的真空中产生的电势分别为
r (1) r>a. (2) 图1 带电细圆环和介质球Fig.1 The system consisting of a charged ring and a dielectric spheroid 图2 带电细圆环的电势分布Fig.2 The potential distribution of a charged ring 如图3所示,带电细圆环和介质球系统的电势在介质球内外(除带电圆环所在的位置外)均满足拉普拉斯方程 (3) (4) 介质球处于带电细圆环的电场中,故介质球内外的电势应由两部分组成: 细圆环产生的电势uq(r,θ),和介质球受到带电细圆环的电场作用而出现的极化电荷所产生的电势u′(r,θ).由电势叠加原理知,系统的电势为 (5) (6) (7) (8) 将式(1)、(2)、(7)、(8)代入式(5)和(6),得到在介质球内、介质球表面和以a为半径的球面之间、以a为半径的球面外3个区域内的电势分别为 (9) (10) (11) 图3 带电细圆环与介质球系统的电势分布Fig.3 The potential distribution of a system consisting of a charged ring and a dielectric spheroid 由本问题的已知条件可以断定,空间电势u(r,θ)应当与oxy面对称,即u(r,θ)=u(r,π-θ),又Pn[cos(π-θ)]=(-1)nPn(cosθ),则要求式(9)~(11)中的n只能取偶数.即n=2l,l=0,1,2,…,将式(9)~(11)中的n用2l表示,得到 (12) (13) (14) (15) (16) 式(15)和(16)的两边乘以P2l(cosθ)sinθ(l=0,1,2,…),对θ从0→π积分,再根据勒让德多项式的正交性能,可推得以下结论: (17) (18) 解式(17)和(18),得 (19) (20) 将式(19)、(20)代入式(12)~(14),得系统在3个区域内的电势分别为: (21) (22) (23) 由式(21)~(23),用Matlab软件在oxz面内作带电圆环和介质球系统的等势线,如图4所示. 图4 带电细圆环与介质球系统在oxz面内的等势线Fig.4 Isopotential line of a system consisting of a charged ring and a dielectric spheroid in the oxz plane 在式(21)中,取l=0的对应项,得介质球球心处的电势为 (24) 在式(23)中,当r≫a时,取l=0的对应项,求得远离圆环处的电势为 (25) 式(25)表明,远离圆环处的电势与位于介质球球心处电量为q的点电荷的电势相同. 圆环轴线上的点对应的角θ=0或π,将P2n(cosθ)=1代入式(21)~(23),得圆环轴线上各点的电势分别为 r (26) R (27) r>a. (28) 当ε/ε0→∞,介质球相当于导体球,此时,由式(21)~(23),可得带电细圆环和导体球构成的系统的电势分布为 (29) 式(29)表明导体球内为等电势区域. R (30) (31) 采用本文的思路和求解方法,还可以得到带电细圆环和电介质球壳构成的系统的电势分布,不再赘述.2 讨 论
2.1 介质球球心的电势
2.2 远离圆环各点的电势
2.3 带电圆环轴线上的电势分布
2.4 带电细圆环和导体球系统的电势分布