关鈺淋
摘 要 利用等价无穷小代换法求函数极限是数学分析中的重要方法之一。由于这种方法可以大大简化一些函数极限的计算,因而备受广大同学的青睐。然而这种方法并非在任何情况下都可以使用,使用时稍有不慎就会产生意想不到的错误。本文对导师在课堂上布置的讨论课题“利用等价无穷小求极限应注意哪些问题”进行了较为深入的研究,给出了几个关于无穷小量的加、减、乘、除的极限以及复合函数中使用等价无穷小代换法的条件,并给出了证明及应用举例。
关键词 数学分析 无穷小量 等价代换 极限 洛必达法则
中图分类号:O211.4 文献标识码:A DOI:10.16400/j.cnki.kjdkx.2018.07.015
Abstract The use of the equivalent infinity substituting method to find the function limit is one of the important methods in mathematical analysis. Because this method can greatly simplify the calculation of some function limits, it is greatly favored by the majority of students. However, this method cannot be used under any circumstances, and a slight mistake in use can produce unexpected errors. In this paper, the discussion topic of the tutor in the classroom, "What problems should be paid attention to by using the equivalent infinitesimal minimum limit" is studied in depth, and several limits on the addition, subtraction, multiplication and division of infinitesimal quantities and compound functions are given. The conditions of the equivalent infinitesimal substitution method are used, and the proof and application examples are given.
Keywords mathematics analysis; infinitesimal; equivalent substitution; limit; L'Opida Rule
参考文献
[1] 華东师范大学数学系编.数学分析(上)(第四版)[M].北京:高等教育出版社,2017.
[2] 陈新明.用等价无穷小代换法求极限的一些问题[J].高等数学研究,2008.11(5):56-58.
[3] 同济大学数学教研室编.高等数学(上)(第七版)[M].北京:高等教育出版社,2017.