刘选明 孙孟思 李新梅 贺热情 屈丽娜 唐冬英 赵小英
摘 要:FOF2为F-box蛋白家族成员,其生物学功能尚不清楚.采用实时荧光定量PCR和生理學实验相结合的方法,对FOF2基因的表达模式及其在拟南芥抗盐和冷胁迫响应中的作用进行了分析.研究发现,FOF2在拟南芥根、茎生叶和果荚中表达较高,并且其表达受盐和冷胁迫诱导.FOF2过表达株系对盐胁迫敏感,与野生型相比种子萌发率低、幼苗主根较短;相反,fof2突变体对盐胁迫的敏感性则减弱.FOF2过表达和缺失突变体种子萌发对冷胁迫无响应,但其主根在冷处理中分别比野生型短或者长.盐处理下,FOF2过表达株系中盐胁迫反应相关基因的表达量显著降低,fof2突变体中则升高;冷处理下,FOF2过表达株系中冷胁迫反应相关基因的表达量显著升高,fof2突变体中则降低.结果表明,FOF2在植物抗盐胁迫响应中起负调控作用,在抗冷胁迫响应中则可能起正调控作用.
关键词:功能分析;FOF2;F-box基因;逆境胁迫;拟南芥
中图分类号:Q94 文献标志码:A
Abstract:FOF2 is one of the F-box protein family members and its biological function remains unclear. The expression patterns and function of FOF2 in response to salt and cold stress in Arabidopsis were analyzed by real-time quantitative PCR and physiological method. The results showed that FOF2 was highly expressed in root, cauline leaf and silique in Arabidopsis, and its transcriptional level was induced by salt and cold stress. The seed germination and root elongation of FOF2 overexpression lines were hypersensitive to salt stress, while the fof2 mutant showed reduced sensitivity to salt stress compared with wild type. The seed germination of both the FOF2 overexpression lines and fof2 mutant showed no phenotype in response to cold, but their primary root length was shorter or longer than the wild type plant during cold stress, respectively. The salt stress responsive marker genes were down-regulated in FOF2 overexpression lines, but up-regulated in fof2 mutant under salt stress. The cold stress responsive marker genes were up-regulated in FOF2 overexpression lines, but down-regulated in fof2 mutant under cold stress. These results indicate that the FOF2 plays a negative role in salt tolerance, but positive role in cold tolerance in Arabidopsis.
Key words:functional analysis; FOF2; F-box gene; abiotic stress; Arabidopsis
在拟南芥基因组中约有700个基因编码F-box蛋白家族.F-box蛋白家族的共同特点是在氨基酸序列中含有一段F-box基序,它们在植物生长发育过程中发挥了重要调控作用[1-5].除了植物,F-box蛋白在动物中也起到了重要的作用,如控制骨和软骨的形成[6].F-box蛋白通常通过形成SCF复合物行使功能[7].SCF复合物包含4个亚基分别为Cullin、SKP1、RBX1和F-box蛋白[8],每个 F-box蛋白家族成员的 N端都至少含 1个大约40~50个保守氨基酸的F-box基序, 并与Skp1结合; C端是结构不同的蛋白-蛋白相互作用结构域,包括富含亮氨酸的重复序列(LRR)、Kelch和WD40等[9].F-box蛋白通过识别并结合底物蛋白,介导靶蛋白通过泛素化蛋白酶体途径降解.例如在生长素调节通路中,生长素作为信号分子触发F-box蛋白TRI1形成SCF复合物,促使IAA/ARFs复合体中的IAA被泛素化降解,释放出ARFs来调控下游的基因表达,进而调节植物的生长发育、开花及逆境胁迫等等[10-12].此外,赤霉素[13]和茉莉酸甲酯[14]等均以类似的方式调控下游基因表达及植物的生长发育过程.
近年来,已有研究报道F-box蛋白参与植物逆境响应[15].有数据分析表明,在水稻中超过43种不同类型的F-box蛋白来应对不同类型的逆境胁迫[16],它们在逆境中可能大多数起正调节作用,其他还有辣椒、菜豆和小麦也有类似的表达结果[10,17-18].霍冬英等[19]在对谷子进行转录组分析时鉴定出525个F-box蛋白, 其中19个在干旱胁迫下表达量上调.F-box基因AtPP2-B11过表达明显减弱植株对干旱的抗性;AtPP2-B11蛋白可与LEA14蛋白相互作用, 表明AtPP2-B11很可能作为一个负调节因子, 通过调节LEA14蛋白的水平调控植物的干旱抗性[20].Zhang等发现F-box蛋白DOR,在干旱响应中起到负调节的作用,dor突变体对干旱的耐受性增强[21];EDL3在干旱中也起到了一定的调节作用,通过ABA信号通路调控植物的抗干旱胁迫能力[22];MAX2作为独脚金内酯的合成基因也参与了植物干旱胁迫响应,与野生型相比, max2突变体的气孔关闭对ABA敏感程度降低, 抗旱能力较弱[2, 23-24].
F-box蛋白还参与植物抗冷胁迫和盐胁迫响应.低温胁迫下,miR393表達上调,导致F-box基因TIR1 mRNA降解,抑制其翻译过程, 因而降低生长素效应并抑制植物生长, 进而提高植物的低温适应性[25].枳是柑橘的变种, 广泛种植在低温环境条件下.研究发现, 低温驯化处理的枳中F-box基因在转录及蛋白表达水平上均提高[26].在盐胁迫中, 水稻F-box基因OsMsr9被快速诱导表达.当在水稻和拟南芥中过表达OsMsr9时, 转基因植株表现出较强的耐盐性,耐盐相关基因的表达量提高,表明OsMsr9正向调节植物的耐盐性[27].
我们研究发现F-box基因FOF2(F-box of flowering)调控植物开花[28],但该基因是否参与植物抗逆境响应过程尚不清楚.本研究采用实时荧光定量PCR和生理学方法相结合,研究了FOF2基因的表达模式,及其在植物抗盐和冷胁迫响应过程中的作用,为深入研究其调控机制奠定了基础.
1 材料与方法
1.1 植物材料和载体
拟南芥野生型 Col-4和Col-0,FOF2过表达株系MycFOF2ox1, MycFOF2ox2和MycFOF2ox6,以及fof2突变体(SALK_016168C)均为哥伦比亚生态型,由本实验室保存.
1.2 胁迫处理
拟南芥种子经过15% bleach浸泡5 min,然后用无菌水洗7~8次,在4 ℃冰箱放置2~3 d后,播种在1/2MS固体培养基上.放置在连续光照培养箱培养12 d后,将幼苗拔出放置于NaCl溶液中进行盐胁迫处理,或者将培养皿转移到4 ℃进行冷胁迫处理不同时间,收集样品,液氮速冻后,保存在-70 ℃冰箱中,用于后续的RNA分析.
1.3 种子萌发分析
拟南芥种子经过15% bleach浸泡5 min,然后用无菌水洗7~8次后将一部分种子播种于添加150 mM NaCl的1/2MS固体培养基上,放置在22 ℃连续光照培养箱中培养;另一部分种子播种于1/2MS培养基上,在11 ℃连续光照培养箱中培养.
每个处理播种50粒种子.以种子露出胚根为标准,于第2 d统计种子萌发率,连续统计6 d.
1.4 主根伸长分析
拟南芥种子经过15% bleach浸泡5 min,用无菌水洗7~8次,在4 ℃冰箱放置2~3 d后,播种在1/2MS固体培养基上.连续光照培养箱中垂直培养7 d后,分别进行盐处理和冷处理.盐胁迫处理:将幼苗转移到添加0、100、150、或250 mM NaCl的1/2MS培养基上,垂直培养5 d,测量幼苗主根的长度.冷胁迫处理:将幼苗直接转入11 ℃连续光照培养箱中垂直培养5 d测量幼苗主根的长度.每个处理至少测量10株幼苗.
1.5 实时荧光定量PCR
采用RNAiso Plus (TakaRa, Japan)提取总RNA,按照PrimeScript RT regent Kit With gDNA Eraser (TakaRa, Japan)试剂盒说明合成cDNA.cDNA模板稀释10~20倍,在实时荧光定量PCR仪(Mx3000P)上,按照SYBR Premix Ex TaqTM(Perfect Real time)(TakaRa)试剂盒的说明进行实时荧光定量PCR分析.PCR反应程序为94 ℃预变性10 min,94 ℃变性30 s,57 ℃退火30 s,72 ℃延伸30 s,共45个循环.每个实验重复3次,看家基因ACTIN2作为分子内标.用于定量PCR的引物序列见表1.
2 结 果
2.1 FOF2组织器官表达模式分析
基因的时空表达模式暗示了它可能存在的功能,可为基因的生物学功能研究提供重要线索[29].采用实时荧光定量PCR检测FOF2基因在拟南芥不同组织器官中的表达,发现FOF2在根、茎生叶和果荚中的表达水平相对较高,比种子和幼苗中的表达量约高5倍(图1).根是植物吸收水分的器官,根部越发达更有利于逆境生存.FOF2在不同组织器官中的表达量暗示了FOF2可能主要在根和果荚的生长发育中发挥作用.
2.2 FOF2基因表达对盐和冷胁迫的响应
利用plantCARE(http://bioinformati cs.psb.ugent.be/webtools/plantcare/html/)网站,对FOF2基因上游1 440 bp启动子序列中的顺式作用元件进行分析,结果发现系列胁迫响应相关元件HSE和TC-rich repeats.因此推测FOF2基因的表达很可能受到逆境胁迫调控.
为了进一步分析FOF2基因表达是否响应逆境胁迫,采用实时荧光定量PCR检测了冷胁迫和盐胁迫条件下,FOF2基因的表达情况.从图2中可看出,FOF2基因的表达量受盐和冷处理诱导,分别在0.5 h和1 h达到最高,随后降低,处理6 h时,开始有所回升(图2).表明FOF2为盐和冷胁迫反应响应相关基因,可能在盐胁迫和冷胁迫响应过程中发挥作用.
2.3 FOF2过表达株系和缺失突变体种子萌发和主根伸长对盐胁迫的响应
为了进一步研究FOF2是否参与拟南芥抗盐胁迫响应,我们分析了FOF2在拟南芥种子萌发和幼苗生长时期的抗盐胁迫作用.试验中,分别将FOF2的过表达株系(MycFOF2ox)、缺失突变体fof2,以及野生型(Col-4和Col-0)的种子播种于添加了150 mM NaCl的1/2MS培养基中,在播种后的第2 d开始统计萌发率,连续统计6 d.统计分析结果显示,在150 mM NaCl处理下,拟南芥种子萌发受到抑制.与野生型相比,过表达株系MycFOF2ox种子萌发对NaCl更加敏感,种子萌发率比野生型低;相反,fof2突变体的种子萌发率则比野生型高.培养第6 d时,过表达株系MycFOF2ox种子萌发约30%,而野生型(Col-4)的种子萌发率为71%;fof2突变体种子萌发率为68%,野生型(Col-0)的种子萌发率为55%(图3(a)).
随后,分析了不同浓度NaCl处理下拟南芥幼苗主根的伸长情况.试验中将过表达MycFOF2ox与野生型(Col-4),以及缺失突变体fof2与野生型(Col-0)播种在1/2MS培养基上,垂直培养7 d后转移到含有0、100、 150、250 mM NaCl的1/2MS培养基上,继续垂直培养5 d,测量主根长度,结果显示,随着NaCl处理浓度增加,主根伸长受到抑制,MycFOF2ox与野生型(Col-4),以及缺失突变体fof2与野生型(Col-0)之间的主根长度差异越明显(图3(a)).在150 mM NaCl处理下,主根长差异最为明显,过表达株系MycFOF2ox主根比野生型短约4 cm,fof2突变体比野生型长约3 cm(图3(b)).以上研究结果表明,FOF2过表达导致种子萌发和植株主根伸长对盐更加敏感,对盐的耐受性减弱;fof2突变体对盐的敏感性则减弱,说明FOF2在抗盐胁迫响应过程中抑制种子萌发和主根伸长.
2.4 FOF2过表达株系和缺失突变体种子萌发和主根伸长对冷胁迫的响应
为了进一步研究FOF2是否参与拟南芥抗冷胁迫响应,我们测定了冷处理下,过表达株系MycFOF2ox和缺失突变体fof2的种子萌发率和主根伸长情况.试验中,分别将MycFOF2ox过表达株系、fof2缺失突变体,以及野生型(Col-4和Col-0)播种于1/2MS培养基中,然后放置于11 ℃培养箱培养,在播种后的第2 d开始统计萌发数,连续统计6 d.结果显示,冷处理条件下,过表达MycFOF2ox、缺失突变体fof2的种子萌发率与野生型之间并无显著性差异(图4(a)),表明FOF2过表达或者缺失对冷处理条件下的种子萌发并无明显影响.随后,检测冷处理条件下主根的伸长情况.结果显示,与野生型相比,过表达株系MycFOF2ox主根伸长对冷更为敏感,其主根比野生型短;fof2突变体幼苗主根伸长对冷的敏感性则减弱,其主根比野生型长(图4(b)),表明FOF2在冷胁迫响应中,主要抑制主根伸长.
2.5 FOF2过表达和缺失突变体中盐胁迫和冷胁迫相关基因表达分析
为了进一步了解FOF2在盐胁迫响应过程中的作用机制,采用实时荧光定量PCR检测了盐处理条件下,过表达MycFOF2ox、缺失突变体fof2,以及野生型(Col-4和Col-0)中胁迫反应关键基因SOS1,SOS2和SOS3的表達[30-36].结果显示,SOS1,SOS2和SOS3均受盐处理诱导,但在过表达MycFOF2ox中的水平低于野生型Col-4,在突变体fof2中的表达水平则高于野生型Col-0(图5(a)),表明FOF2负调节盐胁迫响应相关基因的表达.
为了探究FOF2是否对冷胁迫下游基因产生影响,我们检测了冷胁迫相关基因CBF1,CBF3和COR15a[37-40],在过表达MycFOF2ox、缺失突变体fof2及野生型中的表达.实时荧光定量PCR结果显示,CBF1,CBF3和COR15a受冷处理迅速诱导,它们在过表达株系MycFOF2ox中的表达量高于野生型Col-4,而在突变体的表达量则低于野生型Col-0(图5(b)),表明FOF2上调冷胁迫响应相关基因表达.
3 讨 论
植物在抵御不同胁迫环境下产生了不同的响应机制[37].在盐胁迫处理中,过表达MycFOF2ox种子萌发和主根长度的敏感性高于野生型,盐胁迫关键基因SOS1,SOS2和SOS3[30-36]的转录水平均低于野生型,这说明FOF2在盐胁迫响应中抑制种子萌发和主根伸长,负调节胁迫反应相关基因的表达.冷条件处理下,FOF2过表达株系的主根伸长表现为对冷更为敏感,但是种子萌发对冷并没有明显响应,说明FOF2在冷胁迫响应中可能具有生长发育时期阶段性.COR15A,CBF1和CBF3是冷胁迫中的关键基因[38-42].这些基因在冷处理过表达株系MycFOF2ox中的增加程度高于野生型Col-4,在缺失突变体fof2中的表达量则低于野生型Col-0,这与盐胁迫响应机制不同,FOF2在冷胁迫响应中正调节胁迫反应相关基因的表达.因此推测,FOF2在植物抗冷胁迫中可能起正调控作用,这还需要从生理生化水平上作进一步研究.
F-box蛋白是在植物泛素化降解过程中充当识别底物的作用,通过调节不同底物蛋白的水平行使多种功能.在本研究中,我们发现F-box蛋白FOF2参与了逆境胁迫,不同非生物胁迫的处理中,FOF2的功能表现并不完全一致,表明FOF2在植物抗逆境胁迫响应中的多重性特征.今后,我们将进一步通过鉴定其靶蛋白深入研究其调控逆境胁迫响应过程的分子机制.
参考文献
[1] LECHNER E, ACHARD P, VANSIRI A, et al. F-box proteins everywhere[J]. Curr Opin Plant Biol, 2006, 9(6): 631-638.
[2] SHEN H, ZHU L, BU Q Y, et al. MAX2 affects multiple hormones to promote photomorphogenesis[J]. Mol Plant, 2012, 5(3): 750-762.
[3] LIU Y, JI X, NIE X, et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs[J]. New Phytologist, 2015, 207(3):692-709.
[4] GAGNE J M, SMALLE J, GINGERICH D J, et al. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation[J]. Proc Natl Acad Sci U S A, 2004, 101(17): 6803-6808.
[5] SEKI M, ISHIDA J, NARUSAKA M, et al. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray[J]. Funct Integr Genomics, 2002, 2(6): 282-291.
[6] YUMIMOTO K, MATSUMOTO M, ONOYAMA I, et al. F-box and WD repeat domain-containing-7 (Fbxw7) protein targets endoplasmic reticulum-anchored osteogenic and chondrogenic transcriptional factors for degradation[J]. J Biol Chem, 2013, 288(40): 28488-28502.
[7] MCGINNIS K M, THOMAS S G, SOULE J D, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase[J]. Plant Cell, 2003, 15(5): 1120-1130.
[8] DESHAIES R J. SCF and Cullin/Ring H2-based ubiquitin ligases[J]. Annu Rev Cell Dev Biol, 1999, 15: 435-467.
[9] KIPREOS E T, PAGANO M. The F-box protein family[J].Genome Biology, 2000, 1(5):1-7.
[10]CHEN R, GUO W, YIN Y, et al. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.)[J]. Int J Mol Sci, 2014, 15(2): 2413-2430.
[11]KEPINSKI S, LEYSER O. The Arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 446-451.
[12]TAN X, CALDERON-VILLALOBOS L I, SHARON M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007, 446(7136): 640-645.
[13]MURASE K, HIRANO Y, SUN T P, et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456(7221): 459-463.
[14]XIE D X, FEYS B F, JAMES S, et al. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility[J]. Science, 1998, 280(5366): 1091-1094.
[15]GUPTA S, GARG V, KANT C, et al. Genome-wide survey and expression analysis of F-box genes in chickpea[J]. BMC Genomics, 2015, 16(1): 67.
[16]JAIN M, NIJHAWAN A, ARORA R, et al. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress[J]. Plant Physiol,2007, 143(4): 1467-1483.
[17]ZHOU S, SUN X, YIN S, et al. The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance[J]. Plant Physiol Biochem, 2014, 84: 213-223.
[18]MALDONADO-CALDERON M T, SEPULVEDA-GARCIA E, ROCHA-SOSA M. Characterization of novel F-box proteins in plants induced by biotic and abiotic stress[J]. Plant Sci, 2012, 185/186: 208-217.
[19]霍冬英, 鄭炜君, 李盼松, 等. 谷子 F-box 家族基因的鉴定, 分类及干旱响应[J]. 作物学报, 2014, 40(9): 1585-1594.
HUO D Y, ZHENG W J, LI P S, et al. Identification, classification, and drought response of F-box gene family in foxtail millet [J]. Acta Agronomica Sinica, 2014, 40(9): 1585-1594. (In Chinese)
[20]LI Y, JIA F, YU Y, et al. The SCF E3 Ligase AtPP2-B11 plays a negative role in response to drought stress in arabidopsis[J]. Plant Molecular Biology Reporter,2014, 32(5): 943-956.
[21]ZHANG Y, XU W, LI Z, et al. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis[J]. Plant Physiol, 2008, 148(4): 2121-2133.
[22]KOOPS P, PELSER S, IGNATZ M, et al. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana[J]. J Exp Bot, 2011, 62(15): 5547-5560.
[23]BU Q, LV T, SHEN H, et al. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis[J]. Plant Physiol, 2014, 164(1): 424-439.
[24]NELSON D C, SCAFFIDI A, DUN E A, et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana[J]. Proc Natl Acad Sci U S A, 2011, 108(21): 8897-8902.
[25]謝兆辉. 内源小RNAs在植物胁迫反应中的作用[J]. 遗传, 2009, 31(8): 809~817.
XIE Z H. The role of endogenous small RNAs in plant stress responses [J]. Hereditas,2009, 31(8): 809~817. (In Chinese)
[26]YAN Y S, CHEN X Y, YANG K, et al. Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotes root growth in rice[J]. 分子植物(英文版),2011, 4(1): 190-197.
[27]XU G, CUI Y, WANG M, et al. OsMsr9, a novel putative rice F-box containing protein, confers enhanced salt tolerance in transgenic rice and Arabidopsis[J]. Molecular Breeding, 2014, 34(3): 1055-1064.
[28]HE R,LI X, ZHONG M,et al. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis[J]. The Plant Journal, 2017, 91: 788-801.
[29]赵小英, 谢敏敏, 贺热情, 等. 拟南芥 AtWNK9 基因的定位及表达分析[J]. 湖南大学学报(自然科学版),2013, 40(10): 87-92.
ZHAO X Y, XIE M M, HE R Q, et al. Localization and expression analysis of AtWNK9 in arabidopsis [J]. Journal of Hunan University(Natural Sciences),2013, 40(10): 87-92. (In Chinese)
[30]ZHU J K. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002, 53(53): 247-273.
[31]ZHU J, LIU J, XIONG L. Genetic analysis of salt tolerance in arabidopsis: evidence for a critical role of potassium nutrition[J]. Plant Cell, 1998, 10(7): 1181-1191.
[32]YE J, ZHANG W, GUO Y. Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization[J]. Plant Cell Reports, 2013, 32(1): 139-148.
[33]YUE Y, ZHANG M, ZHANG J, et al. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio[J]. Journal of Plant Physiology, 2012, 169(3): 255-261.
[34]CHENG N, PITTMAN J K, ZHU J, et al. The protein kinase SOS2 activates the arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance[J]. Journal of Biological Chemistry, 2004, 279(4): 2922.
[35]LIU J, ISHITANI M, HALFTER U, et al. The arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J]. Proc Natl Acad Sci U S A, 2000, 97(7): 3730-3734.
[36]劉选明,王文文,杨远柱,等.水稻基因OsDHHC13参与氧化胁迫响应的初步研究[J]. 湖南大学学报(自然科学版),2016,43(12):110-116.
LIU X M, WANG W W, YANG Y Z, et al. Preliminary study on a rice OsDHHC13 gene involving in the response to oxidative stress[J]. Journal of Hunan University(Natural Sciences), 2016, 43(12): 110-116. (In Chinese)
[37]HALFTER U, ISHITANI M, ZHU J. The arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3[J]. Proc Natl Acad Sci U S A, 2000, 97(7): 3735-3740.
[38]KANAYA E, NAKAJIMA N, MORIKAWA K, et al. Characterization of the transcriptional activator CBF1 from Arabidopsis thaliana. Evidence for cold denaturation in regions outside of the DNA binding domain[J]. The Journal of Biological Chemistry, 1999, 274(23): 16068.
[39]NOVILLO F, MEDINA J, SALINAS J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF region[J]. Proc Natl Acad Sci U S A, 2007, 104(52): 21002-21007.
[40]MARUYAMA K, SAKUMA Y, KASUGA M, et al. Identification of cold-inducible downstream genes of theArabidopsisDREB1A/CBF3 transcriptional factor using two microarray systems[J]. The Plant Journal, 2004, 38(6): 982-993.
[41]BAKER S S, WILHELM K S, THOMASHOW M F. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression[J]. Plant Molecular Biology, 1994, 24(5): 701-713.
[42]SHINOZAKI K, YAMAGUCHI S K. Gene networks involved in drought stress response and tolerance[J]. J Exp Bot, 2007, 58(2): 221-227.