黄铜矿吸附5-戊基-1,2,4-三唑-3-硫酮的热力学及机理

2018-06-25 01:47牛晓雪刘广义胡哲麻龙群黄耀国肖静晶刘胜
关键词:黄铜矿结合能三唑

牛晓雪,刘广义,胡哲,麻龙群,黄耀国,肖静晶,刘胜

(中南大学 化学化工学院,湖南 长沙,410083)

1,2,4-三唑硫酮化合物具有生物活性和药理活性,广泛用于抗菌[1−2]、抗癌[3]、抗炎[4]、抗惊厥[5]、抗病毒[6]等医药领域;由于其具有高效低毒的优势而逐渐被用于除草剂[7]、杀虫剂[8]、植物生长调节剂[9],消除顶端优势,增产、早熟、抗倒、抗逆等[10]农业领域;另外,因为其有较强配位能力,易与金属形成螯合物而被用作除锈剂和金属缓蚀剂[11]等。1,2,4-三唑-3-硫酮是五元杂环化合物,具有6π电子共轭体系,加之其分子中的硫原子和氮原子具有孤对电子,可强化其作为电子给予体与金属离子的空轨道形成配位键[12−14]。SINGH 等[15]研究了 5-(4-吡啶)-1,2,4-三唑-3-硫酮与Co(II),Ni(II)和Cu(II)的配位方式,发现金属离子与环外 S原子配位形成具有八面体结构的复合物。SCOZZAFAVA等[16]通过核磁共振等方法探究了 4,5-二取代-1,2,4-三唑-3-硫酮与 Zn(II),Hg(II)和 Cu(I)的作用方式,得出Zn(II)和Hg(II)与4,5-二取代-1,2,4-三唑-3-硫酮中的杂环N 原子和环外S 原子成键,而Cu(I)仅与S 原子形成建。PERGOLESE 等[17]研究了1,2,4-三唑-3-硫酮(TAS)在银表面的吸附方式,发现TAS 以其电离的硫醇形式通过硫、氮的孤对电子与银结合而吸附在银表面。O'NEIL 等[18]发现1,2,4-三唑-3-硫酮类化合物对铜的腐蚀具有良好抑制作用。目前,1,2,4-三唑-3-硫酮类螯合剂用作浮选捕收剂回收金属矿物的研究较少。为此,本文作者合成了一种1,2,4-三唑-3-硫酮类表面活性剂——5-戊基-1,2,4-三唑-3-硫酮(PETT),采用浮选试验、吸附试验、zeta电位和X线光电子能谱(XPS)探索了 PETT对黄铜矿的浮选性能及其在黄铜矿表面的吸附热力学与机理。

1 实验

1.1 试剂与仪器

氨基硫脲(TSC)、正己酸、KOH、浓盐酸、正己烷购自商业公司,其纯度均为分析纯。黄铜矿纯矿物产自墨西哥,购自美国WARD’S自然科学有限公司,为人工手捡分选样品。实验和分析仪器主要有:SHA−C型水浴恒温振荡器(常州澳华仪器有限公司生产,中国)、PHS−3C型pH计(上海精密科学仪器有限公司镭磁仪器厂生产,中国)、X−6型显微熔点仪(北京泰克仪器有限公司生产,中国)、Thermo Evolution 201紫外可见分光光度计(美国赛默飞公司生产,美国)、AVANCEⅢ500M型核磁共振波谱仪(布鲁克公司生产,瑞士)和Nicolet FTIR−740型傅里叶变换红外光谱仪(尼高力公司生产,美国)。实验用水为一次蒸馏水。

1.2 矿样制备

黄铜矿经过手碎、手选和玛瑙研钵研磨,取37~74 μm的矿样用于吸附和浮选试验,黄铜矿比表面积为0.561 m2/g(BET法),其X线衍射(XRD)谱如图1所示,X线荧光光谱(XRF)分析结果见表1。实验前用超声波洗涤黄铜矿矿样,每次洗涤3 min,静置1 min后倒掉上层清液,重复洗涤3次,抽滤,自然晾干。

图1 黄铜矿XRD图Fig. 1 XRD pattern of chalcopyrite

表1 黄铜矿主要元素的XRF分析结果(质量分数)Table 1 XRF analysis of chalcopyrite %

1.3 单矿物浮选实验

实验室采用单泡管进行单矿物浮选实验,具体浮选方法如下:每次取已洗涤干燥好的黄铜矿2.0 g置于烧杯中,向其加入220 mL已知浓度的PETT溶液,搅拌1 min,然后用稀HCl或KOH调节矿浆pH,再搅拌3 min后,加入甲基异丁基甲醇(MIBC)使其质量浓度为15 mg/L,继续搅拌1 min后,静置30 s,再将上清液加入单泡管中,通入N2,流速控制在200 mL/min,加入矿物,浮选 3 min,收集泡沫产品和槽内产品,经干燥、烘干、称取质量后计算回收率。黄铜矿浮选回收率ε按下式计算:

式中:m1为泡沫产品的质量,g;m2为槽内产品的质量,g。

1.4 吸附实验

移取50 mL初始浓度为0.1 mmol/L的PETT溶液于150 mL锥形瓶中,加入0.5 g黄铜矿,根据需要调节溶液温度或pH,置于恒温水浴振荡器中,在转速为200 r/min,不同温度(288,298和308 K)下振荡一定时间,用定量慢速滤纸过滤,取上层清液测定其吸光度。

t时刻吸附量Qt由下式可得:

式中:c0为PETT溶液初始浓度,mol/L;ct为t时刻PETT溶液浓度,mol/L;V为溶液体积,L;m为加入的黄铜矿质量,g;Qt为t时刻黄铜矿的吸附量,mol/m2;S为黄铜矿的比表面积,m2/g。

1.5 PETT与黄铜矿作用的动电位

黄铜矿在玛瑙研钵中研磨至 5 μm 以下,称量65 mg黄铜矿于小烧杯中,超声波清洗1 min,沉降30 s后倒掉上层清液,重复清洗1次,然后加入50 mL蒸馏水或浓度为0.5 mmol/L的PETT溶液,分别用浓度为0.3 mol/L和0.02 mol/L的KOH或1.0 mol/L和0.1 mol/L HCl调节矿浆pH后,磁力搅拌5 min,搅拌速度400 r/min,然后测定黄铜矿颗粒的Zeta电位。

1.6 PETT与黄铜矿作用的XPS

采用ESCALAB 250Xi型X线光电子能谱分析仪测量XPS,X线源为Al Ka微聚集单色源,功率200 W,通能为20 eV,步长为0.1 eV,实验过程中分析室真空度为 1.333×10−7~1.333×10−6Pa,开始时的角度为90°,仪器分辨率为0.45 eV,测量误差为0.2 eV。通过Thermo Avantage软件对高分辨率光电子能谱进行非线性拟合得到峰相关参数,用284.6 eV的C 1s校准结合能。将粒径低于74 μm的黄铜矿粉末超声清洗3次,然后加入0.5 mmol/L的PETT,室温下在恒温振荡器中震荡24 h,过滤,蒸馏水洗涤,真空干燥,用于XPS检测。

将浓度为0.5 mmol/L的PETT溶液(pH=5.88)分别与1 mmol/L的Cu+溶液(pH=5.18,由抗坏血酸还原Cu2+生成)或 Cu2+溶液(pH=5.24)等体积混合后分别有黄绿色和蓝色沉淀生成,混合液的pH分别降至3.12和3.20,过滤,蒸馏水洗涤,真空干燥,用于XPS检测。

2 结果与讨论

2.1 PETT合成与表征

首先将74.94 mL(0.6 mol)正己酸加入到250 mL三口烧瓶中,油浴加热至105 ℃后逐渐加入 18.22 g(0.2 mol)氨基硫脲(TSC),TSC加完后,在加热回流条件下反应6 h,冷却析出白色固体,用水-正己烷重结晶该白色固体3次得到己酰胺基硫脲。然后将干燥好的己酰胺基硫脲与质量分数为10%的KOH溶液(物质的量比n(己酰胺硫脲):n(KOH)=1:1.2)加热回流反应 3 h,冷却至室温,用稀盐酸调pH至5~6得白色针状晶体,即得产物PETT,合成的过程为

目标产品为白色针状晶体,产率 82.70%,熔程189.6~191.3 ℃,与文献[19]中的结果一致。采用KBr压片法对产物进行红外光谱测定,在波长 3 105和3 028 cm−1处的峰为N—H伸缩振动峰,2 791 cm−1处的峰为S—H伸缩振动峰,1 601 cm−1处的峰为C=N伸缩振动峰,1 024,1 207,1 228,1 298,1 375和1 479 cm−1处的峰为 C(=S)—NH 的复合伸缩振动峰[20−21]。在测定频率为500 MHz,溶剂为CD3CN的条件下对产品进行核磁氢谱(1HNMR)和碳谱(13CNMR)分析。1HNMR,化学位移δ为:0.920(t, 3H, CH3),1.344(m, 4H, CH2),1.674(m, 2H, CH2),2.585(t, 2H,CH2),10.864(s, 2H, NH或 SH)。13CNMR,δ:14.213,22.106,25.363,26.400,30.884,152.924,166.347,与目标产品PETT的C种类和位移吻合。

2.2 PETT对黄铜矿的浮选性能

黄铜矿浮选回收率与矿浆pH或PETT初始浓度关系见图2。由图2可知:在PETT浓度为50 μmol/L时,随着pH增大,黄铜矿的回收率先增大后减小,在pH=6.2左右达到最大值;在矿浆pH为6.2时,黄铜矿的回收率随PETT初始浓度增大而增大,在PETT浓度为50 μmol/L时,黄铜矿浮选回收率达到90.5%;继续增大PETT浓度,回收率增加不明显[22]。因此,PETT对黄铜矿有良好的捕收性能,有望成为铜矿物优良浮选捕收剂。

2.3 PETT在黄铜矿表面的吸附热力学

2.3.1 时间对吸附量的影响

在PETT初始浓度为0.1 mmol/L,298 K下黄铜矿对PETT吸附量随时间或矿浆pH的变化见图3。由图3可知:黄铜矿对PETT的吸附量随吸附时间的增加而增大,吸附34 h后基本达到平衡。此外,黄铜矿吸附PETT优选的pH为4.0~9.0,在pH约6.2时吸附达到最大,这与浮选试验结果相一致。

2.3.2 等温吸附

在吸附时间为34 h,pH为6.2时,不同温度(298,318和 328 K)下黄铜矿对PETT的平衡吸附量(Qe)与PETT的平衡浓度(ce)关系见图4。

图2 黄铜矿浮选回收率与pH和PETT初始浓度关系Fig. 2 Flotation recovery of chalcopyrite as a function of pH or PETT initial concentration

图3 黄铜矿对 PETT 的吸附量与吸附时间和pH的关系Fig. 3 Adsorption amount of PETT on chalcopyrite surfaces as a function of treatment time or pH

图4 黄铜矿对 PETT 的吸附等温线Fig. 4 Adsorption isotherm of PETT on chalcopyrite surfaces

由图4可知:在相同温度下,黄铜矿对PETT的平衡吸附量随着PETT平衡浓度的增加而增加;在相同的平衡浓度条件下,随温度的升高,黄铜矿对PETT的平衡吸附量也升高,表明该吸附过程为吸热过程。

分别采用Langmuir[23](见式(3))和Freundlich[24](见式(4))等温吸附方程对图4中实验数据进行线性拟合,其结果见图5和表2。

式中:KL为Langmuir常数;Smax为单位面积最大吸附容量,mol/m2;Kf和n为Freundlich参数。

图5 热力学拟合曲线Fig. 5 Thermodynamic fitting curves

表2 Langmuir and Freundlich等温方程拟合结果Table 2 Fitting results of Langmuir and Freundlich isotherm equations

由图5和表2可知:黄铜矿对PETT的吸附既符合Langmuir等温吸附方程,也符合Freundlich等温吸附方程(R2>0.83),但 Langmuir等温吸附方程拟合的线性相关性更佳(相关性系数R2>0.98),说明 PETT在黄铜矿表面的吸附更适合Langmuir模型,是单层吸附为主的化学过程[25]。

2.3.3 吸附热力学

采用表2中的Langmuir参数来计算黄铜矿吸附PETT 过程中的焓变(ΔH)、熵变(ΔS)及吉布斯自由能(ΔG)。这些热力学参数可通过式(5)和式(6)进行拟合计算[26]:

式中:Rg为摩尔气体常数,Rg=8.314 J/(mol.K);T为热力学温度,K;KL为Langmuir常数。

ΔH 和ΔS 可通过lnKL 对T−1 作图所得斜率和截距求得,其结果见表3和图6。从表3和图6可知:在288,298和308 K下,ΔG均为负值,表明黄铜矿吸附PETT为自发过程。ΔH为正值,表明PETT在黄铜矿表面的吸附过程为吸热过程,升高温度有利于吸附。ΔS为正值表明吸附过程可能为熵驱动[27]。从微观上讲,对固液反应,根据吸附交换理论,PETT从水溶液迁移至固液界面并发生化学吸附,有较强的成键作用,PETT由无序趋向有序,此过程熵通常减小。然而,黄铜矿表面吸附的水分子同时也会解吸到液相中,该过程熵增大,且PETT分子中含3个杂环氮原子,在溶液中易与水分子形成氢键,PETT化学吸附于黄铜矿表面后必将削弱与水分子间的作用。因而,PETT在黄铜矿表面的吸附过程熵增大于熵减,总体是一个熵增过程[28]。

表3 PETT 在黄铜矿表面吸附的热力学参数Table 3 Thermodynamics parameters of PETT adsorbing on chalcopyrite surface

图 6 lnKL与T−1的关系Fig. 6 Relationship between lnKL and T−1

2.4 PETT与黄铜矿作用的动电位

黄铜矿颗粒与PETT作用前后的Zeta电位见图7。其结果表明,黄铜矿的等电位点在 pH=4.9处,这与文献[29−30]报道值一致。与 PETT作用后,其 Zeta电位负移,等电位点负移至pH=4.2左右,说明PETT可能吸附于黄铜矿表面带正电的活性位[30]。

图7 黄铜矿与PETT作用前后的Zeta电位Fig. 7 Zeta potential of chalcopyrite before and after PETT treatment

2.5 PETT与黄铜矿作用的XPS

PETT及其与亚铜离子和铜离子作用产物以及黄铜矿与其吸附前后的XPS全谱如图8所示,各元素C 1s,N 1s,O 1s,S 2p,Cu 2p和Fe 3p的原子数分数见表4。从图8和表4可知:预期的元素,如C,N,S,Fe和Cu出现在相应的XPS全谱图[31]。经PETT处理后,黄铜矿表面C和N含量增加,而S,Fe和Cu含量有所减少,说明PETT已吸附于黄铜矿的表面,检测到的黄铜矿减少。在Cu+-PETT沉淀物中,C,N,S,Cu的物质的量比接近于 8:3:1:2,表明 Cu+-PETT沉淀物的化学式可能是 Cu2(PETT)。而在 Cu2+-PETT沉淀物中,C,N,S和Cu的物质的量比接近于8:3:1:1,表明 Cu2+-PETT沉淀物的化学式可能为 Cu(PETT)。因此,Cu+-PETT沉淀物的空间结构可能不同于Cu2+-PETT沉淀物。

图8 XPS全谱图Fig. 8 Survey XPS spectra

表4 XPS测定的元素原子数分数Table 4 Atomic concentration of elements as determined by XPS

PETT及其与亚铜离子和铜离子作用产物以及黄铜矿与其吸附前后的高分辨率XPS光谱如图9~11所示,相应的各物种中Cu,S和N原子的峰参数及化学态分别见表5~7。

由图9和表5可知:在Cu+-PETT沉淀物中,Cu 2p3/2结合能仅出现在 932.65eV 处,归属于 Cu(I)物种[32−33]。而在 Cu2+-PETT沉淀物中,Cu 2p3/2结合能出现在932.32eV处,为Cu(I)或Cu(Ⅱ)硫化物物种[34],说明Cu2+与PETT的反应可能伴随着二价铜被还原成一价铜[31,35]。

而在黄铜矿表面,结合能为 934.17 eV处的Cu 2p3/2峰归属铜的氧化物,931.77 eV和932.59 eV处归属于铜的硫化物 CuFeS2,Cu2S或 CuS,说明黄铜矿表面主要以硫化态形式存在,只有少部分被氧化为氧化物或氢氧化物(10.93%)。经 PETT处理后,黄铜矿表面的Cu 2p3/2的结合能出现在932.04 eV和932.63 eV,分别对应于铜的CuFeS2/Cu2S和Cu(I)-PETT/CuS物种。因此,黄铜矿吸附PETT时有Cu(I)-PETT表面络合物的生成以及部分二价铜被还原成一价铜。

每组S 2p XPS谱由S 2p3/2和 S 2p1/2组成,它们的结合能相差1.18 eV,S 2p3/2的强度为 S 2p1/2的2倍。从图10和表6可知:PETT和Cu+-PETT的S 2p3/2结合能分别为 162.35 eV和 162.66 eV,说明 Cu+与PETT反应时硫原子失去电子,生成Cu(I)—S键,其结合能升高[36]。Cu2+-PETT沉淀物的S 2p3/2XPS谱有2组峰,分别位于162.57 eV和164.19 eV,其强度比约为1:2,可能Cu2+与PETT反应时部分二价铜被还原成一价铜,生成Cu(I)—S键,同时环外硫原子被氧化生成 S—S键,或者是二价铜直接与硫原子反应生成Cu(II)—S键,S 2p3/2结合能升至164.19 eV。

黄铜矿的S 2p3/2XPS谱由3种成分组成,主要的对称峰位置在 160.91 eV[37],可能为其体相硫[38],在162.17 eV和 162.92 eV附近的2对称峰可能归属于二硫化物硫和聚合物硫[39],这 3 种成分(S2−,S22−,Sn2−)的原子数分数分别为72.12%,17.79%和10.07%,说明黄铜矿表面有小部分硫被氧化,这与其Cu 2p XPS结论相一致。PETT吸附后,黄铜矿表面S 2p3/2XPS峰发生了明显变化,其中,体相S 2p3/2结合能出现在161.17 eV处,其强度减弱,表明PETT覆盖其表面,这与Cu 2p XPS结论相符。S 2p3/2结合能为162.16 eV处的硫归属于二硫化物硫和有机硫(Cu-PETT络合物中的硫),其原子数分数明显增加(由吸附前的17.79%升高至吸附后的 55.35%),再次证明 PETT化学吸附于黄铜矿表面并由 Cu(I)-S键生成。S 2p3/2结合能为163.92 eV处的硫归属于有机硫,其可能为PETT的环外硫与Cu(Ⅱ)成键硫或PETT氧化产物二硫化合物中的硫。

图9 Cu 2P3/2 XPS 精细谱Fig. 9 High-resolution XPS spectra of Cu 2P3/2

表5 Cu 2p3/2 XPS精细谱分析Table 5 Deconvolution with Gaussian–Lorentzian bands of Cu 2p3/2 XPS spectra

图10 S 2p XPS精细谱Fig. 10 High-resolution S 2P XPS spectra

表6 S 2p XPS精细谱分析Table 6 Results of deconvolution with Gaussian–Lorentzian bands of S 2p XPS spectra

由图11和表7可知:PETT的N 1s XPS由2个谱带组成,对应的峰位置分别为400.54 eV和401.16 eV,相应的原子数分数为67.11%和32.89%,分别归属于1,2,4-三唑环中C—N—N—C和C—N—C上的氮原子[37]。与 Cu+(或 Cu2+)作用后,C—N—N—C和 C—N—C氮原子的结合能分别出现在 399.17 eV和400.09 eV(或399.23 eV和400.43 eV)处,对应的原子数分数分别为72.46%和27.54%(或68.03%和31.97%)。这表明,铜原子与硫原子成键后,其3d轨道有富裕电子,铜原子可将部分电子转移给氮原子,生成Cu—N键,使 N原子电子云密度增大。与此同时,1,2,4-三唑-3-硫酮为共轭体系[12−14],由于 N原子和 S原子的存在,使其与铜原子成键后各原子的价电子容易通过共轭效应自由活动,进一步降低1,2,4-三唑中N 1s的结合能。

图11 N 1s XPS图Fig. 11 High-resolution N 1s XPS spectra

表7 N 1s XPS精细谱分析Table 7 Results of deconvolution with Gaussian-Lorentzian bands of N 1s XPS spectra

黄铜矿吸附 PETT后,其表面同样出现了 C—N—N—C和C—N(—Cu)—C官能团中N 1sXPS峰,对应峰位置为399.33 eV和400.65 eV,原子数分数分别为66.23%和33.77%,说明吸附于黄铜矿表面的PETT也与黄铜矿表面铜形成Cu—N键。综上所述,PETT可能通过三唑环内氮原子和环外硫原子与黄铜矿表面的铜原子成键,生成Cu-PETT表面络合物。

3 结论

1)以正己酸和氨基硫脲为原料,加热回流条件下得到己酰胺硫脲,该中间体在碱性条件下环化并酸化得 5-戊基-1,2,4-三唑-3-硫酮,通过测熔点、红外光谱和核磁共振氢谱及碳谱确认合成了目标产物。

2)PETT是黄铜矿的优良捕收剂,其吸附于黄铜矿表面的优选pH为4.0~9.0,吸附量随温度升高而增大,符合Langmuir等温吸附模型,吸附焓变ΔH和熵变 ΔS均大于 0而吸附自由能 ΔG小于 0 kJ/mol(298 K)。这表明PETT吸附于黄铜矿表面的过程可能为自发、吸热的单分子层化学吸附。

3)PETT可能吸附于黄铜矿表面带正电的活性位而使其Zeta电位负移。PETT可能通过三唑环内氮原子和环外硫原子与黄铜矿表面的铜原子成键,生成Cu-PETT表面络合物而化学吸附于黄铜矿表面。

[1]TURAN-ZITOUNI G, KAPLANCIKLI Z A, YILDIZ M T, et al.Synthesis and antimicrobial activity of 4-pHenyl/cyclohexyl-5-(1-pHenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H-1, 2,4-triazole derivatives[J]. European Journal of Medicinal Chemistry, 2005, 40(6): 607−613.

[2]SUMANGALA V, POOJARY B, CHIDANANDA N, et al.Facile synthesis, cytotoxic and antimicrobial activity studies of a new group of 6-aryl-3-[4-(methylsulfonyl)benzyl]-7H-[1, 2, 4]triazolo [3, 4-b][1, 3, 4]thiadiazines[J]. European Journal of Medicinal Chemistry, 2012, 54: 59−64.

[3]MAVROVA A T, WESSELINOVA D, TSENOV Y A, et al.Synthesis, cytotoxicity and effects of some 1, 2, 4-triazole and 1,3, 4-thiadiazole derivatives on immunocompetent cells[J].European Journal of Medicinal Chemistry, 2009, 44(1): 63−69.

[4]ALMASIRAD A, TABATABAI S A, FAIZI M, et al. Synthesis and anticonvulsant activity of new 2-substituted-5-[2-(2-fluoropHenoxy)pHenyl]-1, 3, 4-oxadiazoles and 1, 2,4-triazoles[J]. Bioorganic & Medicinal Chemistry Letters, 2004,14(24): 6057−6059.

[5]AMIR M, SHIKHA K. Synthesis and anti-inflammatory,analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2, 6-dichloroanilino)pHenyl]acetic acid derivatives[J].European Journal of Medicinal Chemistry, 2004, 39(6):535−545.

[6]ABDEL-WAHAB B F, ABDEL-LATIF E, MOHAMED H A,et al. Design and synthesis of new 4-pyrazolin-3-yl-1, 2,3-triazoles and 1, 2, 3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents[J]. European journal of medicinal chemistry, 2012, 52: 263−268.

[7]陆咏, 袁少波. 噻吩及其衍生物[J]. 精细与专用化学品, 2002,10(22): 5−8.LU Yong, YUAN Shaobo. ThiopHene and its derivatives[J]. Fine and Specialty Chemicals, 2002, 10(22): 5−8.

[8]CHIBA M, CHERNIAK E A. Kinetic study of reversible conversion of methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate (benomyl) to methyl 2-benzimidazolecarbamate (MBC)and butyl isocyanate (BIC)in organic solvents[J]. Journal of Agricultural and Food Chemistry,1978, 26(3): 573−576.

[9]杨双花. 新型含1,2,4-三唑类化合物的合成、表征及生物活性研究[D]. 青岛: 青岛科技大学化工学院, 2006: 12−26.YANG Shuanghua. Studies on synthesis, characterization and biological activities of novel compounds containing 1,2,4-triazole[D]. Qingdao: Qingdao University of Science and Technology. School of Chemical Engineering, 2006: 12−26.

[10]于观平. 含均三唑或噁二唑的三唑类化合物的合成及生物活性研究[D]. 青岛: 青岛科技大学化工学院, 2006: 5−15.YU Guangping. Studies on synthesis and biological activities of triazole compounds containing mean triazole or oxadiazole group[D]. Qingdao: Qingdao University of Science and Technology. School of Chemical Engineering, 2006: 5−15.

[11]OUICI H B, BENALI O, HAREK Y, et al. Inhibition of mild steel corrosion in 5% HCl solution by 5-(2-hydroxypHenyl)-1, 2,4-triazole-3-thione[J]. Research on Chemical Intermediates,2013, 39(6): 2777−2793.

[12]ZHANG Y Y, ZHOU C H. Synthesis and activities of napHthalimide azoles as a new type of antibacterial and antifungal agents[J]. Bioorganic & Medicinal Chemistry Letters,2011, 21(14): 4349−4352.

[13]ELDAKAR N, NOBE K E N. Electrochemical and corrosion behavior of iron in presence of substituted benzotriazoles[J].Corrosion, 1977, 33(4): 128−130.

[14]LIU C, LU G, JIANG L, et al. Study on the electrochemical behavior of dopamine and uric acid at a 2-Amino-5-mercapto-[1,3,4]triazole self-assembled monolayers electrode[J]. Electroanalysis, 2006, 18(3): 291−297.

[15]SINGH B, SINGH R. Transition metal complexes of 3-(4-pyridyl)-triazoline-5-thione[J]. Journal of Inorganic and Nuclear Chemistry, 1972, 34(11): 3449−3454

[16]SCOZZAFAVA A, CAVAZZA C, SUPURAN C T, et al.Complexes with biologically active ligands, Part 11: Synthesis and carbonic anhydrase inhibitory activity of metal complexes of 4,5-disubstituted-3-mercapto-1,2,4-triazole derivatives[J]. Metalbased Drugs, 1998, 5(1): 11−18.

[17]PERGOLESE B, BIGOTTO A. Study by SERS spectroscopy of the adsorption of 1H-1,2,4-triazole-3-thione on silver sols[J].Journal of Molecular Structure, 2003, 651/652/653: 349−352.

[18]O'NEIL R M, PHILLIPS E. Corrosion inhibition[P].GB2182030A, 1987−05−07.

[19]WILLEMS J F, VANDENBERGHE A. The preparation of 5-substituted 1, 2, 4-triazoline-3-thiones and of alkylene and arylene 5, 5'-bis-l, 2, 4-triazoline-3-thiones[J]. Bulletin des Sociétés Chimiques Belges, 1966, 75(5/6): 358−365.

[20]刘广义, 钟宏, 戴塔根, 等. 中碱度条件下乙氧羰基硫脲浮选分离铜硫[J]. 中国有色金属学报, 2009, 19(2): 389−396.LIU Guangyi, ZHONG Hong, DAI Tagen, et al. Flotation separation of Cu/Fe sulfide minerals by ethoxycarbonyl thiourea under middle alkaline conditions[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(2): 389−396.

[21] 曲肖彦, 刘广义, 刘胜义, 等. 3-己基-4-氨基-1,2,4-三唑-5-硫酮在黄铜矿表面的吸附动力学与热力学[J]. 中国有色金属学报, 2015, 25(7): 2006−2014.QU Xiaoyan, XIAO Jingjing, LIU Guangyi, et al. Investigation on the flotation behavior and adsorption mechanism of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione to chalcopyrite[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(7): 2006−2014.

[22]肖静晶, 狄宁, 刘广义, 等. N-丁氧丙基-N′-乙氧羰基硫脲对硫化矿物的浮选行为与吸附机理[J]. 中国有色金属学报,2014, 24(2): 561−568.XIAO Jingjing, DI Ning, LIU Guangyi, et al. Adsorption mechanism and flotation behaviors of N-butoxypropyl-N’-ethoxycarbonyl thiourea with sulfide minerals[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(2): 561−568.

[23]BELTON G R. Langmuir adsorption, the Gibbs adsorption isotherm, and interracial kinetics in liquid metal systems[J].Metallurgical Transactions B, 1976, 7(1): 35−42.

[24]UMPLEBY R J, BAXTER S C, BODE M, et al. Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers[J]. Analytica Chimica Acta,2001, 435(1): 35−42.

[25]刘广义,张慧丽,任恒,等. N, N′-二异丙氧基丙基-N″, N'''-氧二乙氧羰基硫脲在黄铜矿表面的吸附动力学和热力学[J].中南大学学报(自然科学版), 2015, 46(5): 1588−1594.LIU Guangyi, ZHANG Huili, REN Heng, et al. Adsorption kinetics and thermodynamics of N, N′-dipropoxypropyl-N″,N′′-oxydiethylenedicarbonyl bis (thiourea)with chalcopyrite[J].Journal of Central South University (Science and Technology),2015, 46(5): 1588−1594.

[26]ALBERTY R A. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine pHospHates[J]. Journal of Biological Chemistry, 1969, 244(12): 3290−3302.

[27]TSAI C J, DEL SOL A, NUSSINOY R. Allostery: absence of a change in shape does not imply that allostery is not at play[J].Journal of Molecular Biology, 2008, 378(1): 1−11.

[28]FAIN V M. Principle of entropy increase and quantum theory of relaxation[J]. pHysics-Uspekhi, 1963, 6(2): 294−323.

[29]CHEN Minglian. Effects of microorganisms on surface properties of chalcopyrite and bioleaching[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1421−1426.

[30]HE Zhiling. A novel surfactant, N,N-diethyl-N′-cyclohexylthiourea: Synthesis, flotation and adsorption on chalcopyrite[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 107−114.

[31]GHAHREMANINEZHAD A, DIXON D G. Asselin.Electrochemical and XPS analysis of chalcopyrite (CuFeS 2)dissolution in sulfuric acid solution[J]. Electrochimica Acta,2013, 87: 97−112.

[32]NAVA D, GONZÁLEZ I, LEINEN D, et al. Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite[J]. Electrochimica Acta, 2008, 53(14):4889−4899.

[33]GOH S W, BUCKLEY A N, LAMB R N, et al. The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air[J].Geochimica et Cosmochimica Acta, 2006, 70(9): 2210−2228.

[34]LIU G, QIU Z, WANG J, et al. Study of N-isopropoxypropyl-N’-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS[J].Journal of Colloid and Interface Science, 2015, 437: 42−49.

[35]YIN M, WU C K, LOU Y, et al. Copper Oxide Nanocrystals[J].Journal of Amercian Chenmical Society, 2005, 127: 9506−9511.

[36]BRION D. Photoelectrons spectroscope study on the surface degradation of FeS2, CuFeS2, ZnS and PbS in air and water[J].Applications of Surface Science, 1980, 5(2): 133−152.

[37]BEST S A, BRANT P, FELTHAM R D, et al. X-ray pHotoelectron spectra of inorganic molecules. 18. Observations on sulfur 2p binding energies in transition metal complexes of sulfur-containing ligands[J]. Inorganic Chemistry, 1977, 16(8):1976−1979.

[38]FAIRTHORNE G A, FORNASIERO D, RALSTON J. The interaction of thionocarbamate and thiourea collectors with sulfide mineral surfaces: a flotation and adsorption study[J].International Journal of Mineral Processing, 1997, 50(4):227−242.

[39]VON OERTZEN G U, HARMER S L, SKINNER W M. XPS and ab initio calculation of surface states of sulfide minerals:pyrite, chalcopyrite and molybdenite[J]. Molecular Simulation,2006, 32(15): 1207−1212.

猜你喜欢
黄铜矿结合能三唑
晶体结合能对晶格动力学性质的影响
典型杂质矿物及离子对黄铜矿浸出影响的研究现状
3⁃戊基⁃4⁃氨基⁃1,2,4⁃三唑⁃5⁃硫酮浮选分离黄铜矿与闪锌矿及其机理①
氧化预处理对铜钼浮选分离效果的影响①
黄铜矿吸附O-异丙基-N,N-二乙基硫氨酯的动力学和热力学研究
20%三唑锡悬浮剂防治苹果红蜘蛛效果试验
借鉴跃迁能级图示助力比结合能理解*
含四(3,5-二硝基-1,2,4-三唑基)硼酸肼推进剂的能量特性计算
Ti修饰碳纳米管储氢性能的第一性原理研究
三唑类富氮化合物的研究进展