余 涛,欧阳芬
线性弹性问题的多尺度间断有限元方法
余 涛,*欧阳芬
(井冈山大学数理学院,江西,吉安 343009)
在间断有限元方法的基础上,采用局部正交分解方法构造多尺度基函数,进而得到求解线性弹性问题的多尺度间断有限元方法,并且对非周期及无尺度分离情形给出了最佳误差估计。
线性弹性问题;间断有限元方法;局部正交分解方法
本文考虑不具有周期性或尺度分离特点的多尺度线性弹性问题,通过结合间断有限元方法[4-5]和正交分解方法[6-8]构造相应的多尺度算法。
即
在此基础上定义单元包上的局部修正函数
有
定义具有局部支集的多尺度逼近空间
及局部多尺度间断有限元方法:
证明:将误差分解成三项
根据标准间断有限元误差分析[4]可知,第一项误差
通过定理1可得第二项误差
[1] Babuška I, Osborn J E. Generalized finite element methods: their performance and their relation to mixed methods[J]. SIAM Journal on Numerical Analysis, 1983, 20(3): 510-536.
[2] Wei Nan E, Engquist B, Li X, et al. Heterogeneous multiscale methods: A review[J]. Communications in Computational Physics, 2012, 2(3):89-110.
[3] Abdulle A. Analysis of a heterogeneous multiscale FEM for problems in elasticity[J]. Mathematical Models and Methods in Applied Sciences, 2006, 16(4): 615-635.
[4] Arnold D N. An interior penalty finite element method with discontinuous elements[J]. SIAM journal on numerical analysis, 1982, 19(4): 742-760.
[5] 余涛. 线性弹性问题的异质多尺度—间断有限元方法[J]. 井冈山大学学报:自然科学版,2014,35(4):27-30.
[6] Ayuso B, Marini L D. Discontinuous Galerkin methods for advection-diffusion-reaction problems[J]. SIAM Journal on Numerical Analysis, 2009, 47(2): 1391-1420.
[7] Peterseim D. Variational multiscale stabilization and the exponential decay of fine-scale correctors[M]. Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Springer International Publishing, 2015.
[8] Målqvist A, Peterseim D. Localization of elliptic multiscale problems[J]. Mathematics of Computation, 2014, 83(290): 2583-2603.
[9] Elfverson D, Georgoulis E H, Målqvist A, et al. Convergence of a discontinuous Galerkin multiscale method[J]. SIAM Journal on Numerical Analysis, 2013, 51(6): 3351-3372.
MULTI-SCALE DISCONTINUOUS FEM FOR LINEAR ELASTICITY
YU Tao,*OUYANG Fen
(School of Mathematics and Physics, Jinggangshan University, Ji’an, Jiangxi 343009, China)
We develop a multi-scale discontinuous FEM based on the localized orthogonal decomposition method for solving the multi-scale linear elasticity problems. The optimal error estimate is given without any assumption on periodicity or scale separation.
linear elasticity; discontinuous FEM; localized orthogonal decomposition method
1674-8085(2018)01-0024-03
O242.1
A
10.3969/j.issn.1674-8085.2018.01.006
2017-05-27;
2017-09-12
江西省教育厅科技计划项目(GJJ160758);吉安市软科学计划项目(吉市科计字[2012]32-7);井冈山大学博士科研启动项目(JZB11002);井冈山大学自然科学研究项目(JZ11001)
余 涛(1983-),男,江西万安人,讲师,博士,主要从事多尺度建模及计算机图像研究(E-mail: yutao@jgsu.edu.cn);*欧阳芬(1973-),女,江西吉安人,讲师,主要从事高等数学教学研究(E-mail: 76400405@qq.com).