张志会
摘 要 本文主要阐述了在计算多元函数的极限时,讨论多元函数的极限是否存在。
关键词 多元函数 极限
中图分类号:G421 文献标识码:A
0引言
一元函数的微积分,所讨论的均是单变量函数,在现实生活中,这样的情形是少数。在很多实际问题中,往往牵涉到多方面因素,反映到数学上,就是一个变量依赖于多个变量的情形,这就提出了多元函数以及多元函数的微分和积分问题。在一元函数中,如果,当且仅当,即当时,的极限存在,只需要左極限和右极限同时存在且相等即可。对于多元函数来说,极限存在的要求更复杂。要讨论极限是否存在,只有当以任何方式趋于点时,对应的函数值趋近于确定的常数A,才能说有极限。反之,如果沿着两条不同的路径趋于点,函数值趋于不同的常数,那么函数的极限不存在。本文主要阐述了在计算多元函数的极限时,要讨论多元函数的极限是否存在。
1证明极限不存在
解 显然当点沿轴趋于点时,
又当点沿轴趋于点时,
虽然点以上述两种特殊方式(沿轴或沿轴)趋于原点时,函数的极限存在并且相等。但并不存在,这是因为动点沿直线趋近于点时,有容易看出函数极限的值随的不同而改变的
例如当时,极限值为0
当时,极限值为
所以极限不存在。
2讨论极限是否存在,说明理由
解 显然,当点沿轴趋于点时,
又当点沿轴趋于点时,
虽然点以上述两种特殊方式(沿轴或沿轴)趋于原点时,函数的极限存在并且相等。但并不存在,这是因为动点沿直线趋近于点时,极限为0;动点沿直线时,极限为1,因为两个极限不相等,所以极限不存在。
参考文献
[1] 同济大学数学教研室.高等数学(上册)[M].北京:高等教育出版社,2002.
[2] 黄立宏.高等数学上册[M].上海:复旦大学出版社,2010.endprint