,,
(1.浙江省生物有机合成技术研究重点实验室,浙江 杭州 310014;2.浙江工业大学 生物工程学院,浙江 杭州 310014)
微生物醛酮还原酶结构、功能及其在生物催化中的应用
史丽珍1,2,应彬彬1,2,王亚军1,2
(1.浙江省生物有机合成技术研究重点实验室,浙江 杭州 310014;2.浙江工业大学 生物工程学院,浙江 杭州 310014)
微生物醛酮还原酶(AKR)作为醛酮还原酶超家族的重要构成之一,广泛存在于自然界的各种微生物中,可对一系列天然和非天然的底物进行代谢.通常,微生物AKR是大小约为37 kDa的单体蛋白,具有典型的(α/β)8桶状结构和保守的辅酶结合区域.微生物AKR是NAD(P)H依赖型氧化还原酶,遵循由催化四联体Asp-Tyr-Lys-His推动的强制顺序反应机制.许多微生物AKR被应用于不同的生物转化中,主要包括木糖醇、维生素C前体2-酮-L-古龙酸和各类医药、化工中间体手性醇的合成.
醛酮还原酶;分类;结构;生物催化;手性醇
醛酮还原酶(Aldo-keto reductase,AKR)家族是三个氧化还原酶超家族之一,到目前为止,已超过190 个蛋白被命名分类,并且还有新成员不断地被鉴定确认.AKR的来源十分广泛,几乎分布于自然界所有的生物体内,包括哺乳动物、两栖动物、植物、酵母,原生动物和细菌等[1].AKR具有宽广的作用底物谱,包括脂肪醛、芳香醛、单糖、类固醇和前列腺素等,在辅酶的参与下,能进行羰基还原、碳碳双键还原、内酯还原和半缩醛氧化[2].微生物来源的AKR涵盖最广,是AKR的主要组成之一,尽管大多数AKR体内生理功能未被解析,但因其拥有普遍性、丰富性和多功能性的特性,在生物催化与生物转化方面的应用越来越广泛.
Penning在1997年首次提出了AKR的命名法则,并经过多次修订后,形成了较为完善的命名体系[3-4].具体命名方法如下:以醛酮还原酶的缩写词根AKR作为开头,后跟表示所属家族的阿拉伯数字,之后为亚家族的大写英文单词的首字母,最后为表示蛋白质序列编号的阿拉伯数字,例如AKR1A1表示为AKR第一家族中的亚家族A的第一个蛋白质;由于真核生物翻译mRNA时存在可变剪切,得到功能上有差异的同种蛋白质,故采用加后缀如AKR1A5.1的形式命名;此外,对于命名多聚体AKR时,采用特殊的比例形式如AKR7A1∶AKR7A4(1∶3)进行命名,表示该四聚体AKR由一分子AKR7A1和三分子AKR7A4组成;以上所有的阿拉伯数字,以提交的先后次序排序.
根据AKR分类法则[1],同源性低于40%时,AKR超家族分为16 个家族;再以同源性60%为界,同源性高于60%的属于同一亚家族,同源性低于60%的属于不同的亚家族;但同源性达到97%及以上时,一般认为是同一个蛋白质.在16 个家族中,AKR1,AKR6和AKR7主要分布于哺乳动物中,AKR4主要存在于植物中[5].微生物AKR横跨12 个家族,包括AKR2,AKR3,AKR5,AKR8,AKR9,AKR10,AKR11,AKR12,AKR13,AKR14,AKR15和AKR16,这表明微生物细胞内含有丰富的AKR,在细胞内催化多个代谢过程,具有重要的生理生化功能.
大多数已知的微生物AKR都是单体蛋白,但也存在多聚蛋白,如二聚体AKR2B5,AKR5C3和四聚体CPR-C1,CPR-C2[2, 6-7].类似于其他生物来源AKR,微生物AKR大小约为300~350 个氨基酸,分子量约为34~37 kDa,都具有相同的核心蛋白折叠——磷酸丙糖异构酶(Triose phosphate isomerase,TIM)结构,也称为(α/β)8桶状结构,有些酶蛋白还带有2 个额外的α螺旋结构[8-9].如图1所示[10],来自棒状杆菌的2,5-二酮-D-葡萄糖酸还原酶的主体中心有8 个相互平行的β折叠,其外层存在着8 个α螺旋,而且每个α螺旋与对应的β折叠相互交替和反向平行,前者的氨基端与后者的羧基端通过可变长度的环连接.在桶状结构的背面,有三个具有柔性的可变环A,B和C,能识别、结合不同的底物,控制催化反应.这些羧基端的可变环是决定酶底物特异性的关键,在鉴定不同功能的AKR时具有重要的参考价值.通过多重序列比对确认的高度保守的催化四联体Asp-Tyr-Lys-His在酶蛋白三维结构中的位置比较固定,主要位于组成核心的β折叠上,并在桶状结构开口处形成底物结合口袋.
图1 来自棒状杆菌的2,5-二酮-D-葡萄糖酸还原酶结构 Fig.1 Crystal structure of 2,5-diketo-D-gluconic acid reductase from Corynebacterium sp.
绝大多数的微生物AKR是NADP(H)专一性依赖型,但酵母中的有些木糖还原酶是NAD(H)和NADP(H)双依赖型[11],仅有少数为NAD(H)专一依赖型[12].微生物AKR蛋白N端含有保守的LxxxGxxxPxxGxG辅酶结合区域,辅酶以伸展的状态横跨桶状结构,辅酶的烟酰胺环位于催化口袋的中心,催化四联体的下方.焦磷酸基团横跨β7和β8之间的裂口,腺嘌呤单磷酸基团则嵌在α7和α8结构中间.当辅酶结合后,酶蛋白的β7和β8部分结构发生变化,将辅酶固定在合适的位置[13].到目前为止,微生物AKR偏好不同辅酶类型的结构和机理仍在探索当中,只有少量的报道提供了一定的研究思路.AKR5C3作为严格的NADP(H)依赖,其晶体结构中有12 个与辅酶结合相关的氨基酸,最为重要的是高度保守的Trp30和Trp191与NADP(H)的烟酰胺环形成氢键,Lys234与NADP(H)的焦磷酸基团形成氢键[7].NAD(H)和NADP(H)双依赖的Pichiastipitis木糖还原酶XYLO的辅酶结合口袋由16 个氨基酸组成,不同的辅酶结合产生不同的酶构象:当其与NAD(H)结合时,Glu223和Phe236与辅酶形成氢键;当其与NADP(H)结合时,Lys21和Phe236与辅酶形成氢键[14].
微生物AKR在进行还原反应时,遵循强制顺序反应机制[15],具体催化历程如下:1) AKR酶分子首先与还原型辅酶NAD(P)H结合形成全酶,诱导蛋白构象发生变化,这是整个还原过程的第一个限速步骤;2) 底物进入催化口袋,与全酶结合形成三元复合物;3) NAD(P)H上的H转移到底物羰基C原子上形成产物醇,随后产物离开催化口袋;4) 最后,酶释放氧化型辅酶NAD(P)+,AKR酶分子恢复初始构象,成为单酶,酶蛋白构象回复,这是第二个限速步骤.上述过程中,催化四联体Asp-Tyr-Lys-His起到至关重要的作用(图2[2]),Tyr51作为质子供体具有催化酸的作用,Asp46和Lys80的羧基相互作用形成盐桥,且Lys80和Tyr51之间形成氢键,最终降低Tyr51的pKa值,促进质子转移,His113在质子转移和底物分子的定向方面发挥重要作用[16-18].按照AKR独特的“推-拉”原理,反应分为两部分:Tyr51和His113作用底物羰基使其极性化,同时烟酰胺C4位上的pro-R氢(HR)发生转移;Tyr51提供质子,保证还原反应的完成.
图2 AKR2B5还原羰基底物的机理Fig.2 Mechanism for AKR2B5 catalyzing the reduction of a carbonyl group
木糖醇是一类糖类多元醇,由于其具有特殊的化学和生物学性质被大量应用于食品和药品.在食品工业中,木糖醇既可作为甜味剂增味,又可作为防腐剂延长保质期,还能作为吸热剂加速冷却[19].另外,木糖醇还具有抗氧化、润肤、防冻和降低冰点等能力,所以市场需求逐渐增加,已成为一种重要的添加剂.现今,大规模生产木糖醇通过金属镍等催化剂的催化加氢法,过程需高温高压,生产成本高,环境压力大.因此,利用环境友好和高产率的生物法制备木糖醇是一种前景广阔的替代方式[20].
生物法合成木糖醇过程中,起关键作用的一步即为木糖还原酶转化木糖合成木糖醇.木糖还原酶属于AKR家族中的亚家族AKR2,且均来源于微生物,大量存在于酵母和丝状真菌中,相关报道如表1所示.大多数木糖还原酶是NADPH严格依赖型,仅有少数是NADPH和NADH同等偏好,极少数是NADH偏好或严格依赖.木糖还原酶通常在各类酵母系统中表达,并通过发酵不同生物质原料得到产物木糖醇.Kogje和Ghosalkar[21]构建了4种过表达木糖还原酶基因的Saccharomycescerevisiae,以玉米芯半纤维素水解液为原料和葡萄糖作为NADPH再生的辅底物,发酵生产木糖醇.其中,过表达GRE3的S.cerevisiae菌株的产物时空产率和单位菌体产率分别为0.28 g/(L·h)和34 mg/(g·h).Pratter等[22]以表达Candidatenuis木糖还原酶基因的S.cerevisiae为生物催化剂,40 g/L的木糖可被完全转化,产物时空产率达到1.16 g/(L·h).Kim等[23]采用定向进化和随机突变改造Kluyveromycesmarxianus36907,最优突变株的产物质量浓度提高了120%,达到53 g/L,产物时空产率为0.36 g/(L·h).此外,Phanerochaetesordida,Candidaglycerinogenes和P.spitis也可作为木糖醇发酵生产的表达系统[20].
表1 不同来源木糖还原酶动力学参数Table 1 Kinetic parameters of XRs from various microorganisms
维生素C主要用于维生素保健品和药物制剂.近年来,由于其具有抗氧化和促进胶原蛋白产生的特性,逐渐被应用于食品和饮料生产中[34].2-酮-L-古龙酸(2-KLG)作为维生素C的合成前体,可由2,5-二酮-D-葡萄糖酸(2,5-DKG)C5的酮基还原生成,2-KLG再经酯化和内酯化反应生成维生素C.从D-葡萄糖出发,两步法制备维生素C(图3)是现今工业上的主要生产工艺路线[35].因此具有高选择性还原2,5-DKG活性的还原酶对制备维生素C极为关键.两步发酵法制备维生素C的途径为
根据现有文献报道可知:2,5-DKG还原酶属于AKR5,分布于17 种不同的细菌属中,广泛应用于2-KLG的合成.Miller等[36]首次从Corynebacteriumsp.中分离纯化到可一步还原2,5-DKG生成2-KLG的2,5-DKG还原酶A并进行了表征.Sonoyama等[37]也从突变的Corynebacteriumsp.中纯化得到AKR5C和AKR5D,但酶的底物亲和性和催化效率较差.为获得高性能的2,5-DKG还原酶,Eschenfeldt等[38]采用宏基因组的方法从土壤样品宏基因组中克隆得到两个不同的2,5-DKG还原酶基因,在大肠杆菌中异源表达,发现其对2,5-DKG的亲和性较好,Km值分别为57, 67 μmol/L,可以同时利用NADH和NADPH.在生产上,Sonoyama等[39]则首次采用两步法生产2-KLG,先由Erwiniasp.氧化D-葡萄糖生成2,5-DKG,再经具有2,5-DKG还原酶活性的Corynebacteriumsp.还原生成2-KLG.Anderson等[40]将Corynebacterium中的2,5-DKG还原酶基因导入到宿主Erwiniaherbicola中,构建了从D-葡萄糖一步发酵生产2-KLG的基因工程菌,虽然简化了步骤,但2-KLG的产率只有5%左右.目前,生产效率最高的为Kaswurm等[41]建立的两步法,通过引入葡萄糖脱氢酶催化的NADPH原位再生系统,C.glutamicum的2,5-DKG还原酶可完全还原200 mmol/L的2,5-DKG,2-KLG时空产率达到21.5 g/(L·h).
手性醇是指在手性碳上连接有一个羟基基团的化合物,在药物、农用化学品和特殊材料生产领域中广泛应用,是重要的合成中间体[42].相比传统重金属催化合成技术,微生物AKR不对称还原前手性酮生产手性醇技术具有立体选择性高、转化率高和环境污染少等优点,越来越受到产学界的关注.如图3所示,微生物AKR进行不对称还原时,辅酶烟酰胺环C上的H原子进攻底物羰基时遵循Prelog规则或反Prelog规则[43].大多数微生物AKR在不对称还原羰基化合物时遵循Prelog规则,也有少数酶遵循反Prelog规则.
图3 NAD(P)H烟酰胺环的C4氢转移到底物羰基碳上Fig.3 Hydride transfer from NAD(P)H to the substrate carbonyl C
前手性4-氯-3-羰基丁酸乙酯经不对称还原生成4-氯-(3R)-羟基丁酸乙酯或4-氯-(3S)-羟基丁酸乙酯,分别为L-肉碱和阿托伐他汀钙的重要手性中间体.日本学者Kita等[44]从SporobolomycessalmonicolorAKU4429中分离纯化得到三种AKR——ARI,ARII和ARIII,均能不对称还原4-氯-3-羰基丁酸乙酯.其中ARI和ARIII可将4-氯-3-羰基丁酸乙酯还原成4-氯-(3R)-羟基丁酸乙酯,e.e.值分别为100%和38.4%;与之相反,ARII则将底物还原成4-氯-(3S)-羟基丁酸乙酯,e.e.值为92.7%.还有学者从CandidamagnoliaeAKU4643纯化得到一种能够将4-氯-3-羰基丁酸乙酯100%转化成4-氯-(3R)-羟基丁酸乙酯的AKR,但其稳定性较差,在干燥空气中很快失活.4-溴-(3S)-羟基丁酸甲酯作为他汀类药物的中间体,可类似地采用不对称还原4-溴-3-羰基丁酸甲酯制备得到.Asako等[45]从PenicilliumcitrinumIFO4631中筛选并分离纯化得到AKR3E1,根据部分氨基酸序列反转录得到编码AKR3E1的基因,并在大肠杆菌中表达,AKR3E1对4-溴-3-羰基丁酸甲酯表现出不对称还原能力,AKR3E1催化合成的4-溴-(3S)-羟基丁酸甲酯e.e.值为96%.
随着生物信息学的发展,越来越多的微生物AKR通过基因挖掘技术被发现,并用于手性醇的研究.Ma等[46]通过序列及蛋白三维结构分析,在嗜热菌Thermotogamaritima基因组中筛选得到AKRTm1743基因,并在大肠杆菌中表达,用于2,2,2-三氟苯乙酮不对称还原,得到的S-1-苯基-2,2,2-三氟乙醇e.e.值达到99.8%.Ning等[47]通过挖掘Lodderomyceselongisporus基因组,发现3 个推测AKR基因,并在大肠杆菌中异源表达,命名为LEAKR48,LEAKR49和LEAKR50,并表征了它们对4-氯-3-羰基丁酸乙酯的活性,LEAKR48的催化活力最高,产物4-氯-(3R)-羟基丁酸乙酯e.e.值为98%.Guo等[48]通过基因挖掘技术从C.parapsilosis中克隆得到8株推测的AKR,并以此作为生物催化工具盒,不对称还原一系列的酮酯和苯乙酮衍生物,得到e.e.值超过99%的多个手性醇.
微生物AKR是一类结构功能相似、种属来源广泛、涉及生物体内各种代谢过程的氧化还原酶,含有高度保守的(α/β)8桶状结构,催化四联体、辅酶结合区域和三个可变的底物识别环.明确其结构和催化机理,有助于了解酶蛋白在体内的生理生化作用,也可作为分子改造的理论基础.尽管一些AKR晶体结构已被解析,部分微生物AKR已被开发用于制备一些高附加值精细化学品,但关于微生物AKR如何识别不同底物、不同辅酶结合的结构基础及反应机理有待完善,尤其针对新型AKR挖掘、AKR理性设计、AKR催化新反应发现和高效辅酶再生系统构建等方面的研究有待进一步深入.
[1] PENNING T M. The aldo-keto reductases (AKRs): overview[J]. Chemico-biological interactions, 2015,234:236-246.
[2] KRATZER R, WILSON D K, NIDETZKY B. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies ofCandidatenuisxylose reductase[J]. IUBMB life, 2006,58(9):499-507.
[3] HYNDMAN D, BAUMAN D R, HEREDIA V V, et al. The aldo-keto reductase superfamily homepage[J]. Chemico-biological interactions, 2003, 143:621-631.
[4] BARSKI O A, MINDNICH R, PENNING T M. Alternative splicing in the aldo-keto reductase superfamily: implications for protein nomenclature[J]. Chemico-biological interactions, 2013,202(1/3):153-158.
[5] SENGUPTA D, NAIK D, REDDY A R. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: a structure-function update[J]. Journal of plant physiology, 2015,179:40-55.
[6] QIN H M., YAMAMURA A, MIYAKAWA T, et al. Structure of conjugated polyketone reductase fromCandidaparapsilosisIFO 0708 reveals conformational changes for substrate recognition upon NADPH binding[J]. Applied microbiology and biotechnology, 2014,98(1):243-249.
[7] LIU X, WANG C, ZHANG L, et al. Structural and mutational studies on an aldo-keto reductase AKR5C3 fromGluconobacteroxydans[J]. Protein science, 2014,23(11):1540-1549.
[8] HOOG S S, PAWLOWSKI J E, ALZARI P M, et al. Three-dimensional structure of rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily[J]. Proceedings of the national academy of sciences of the United States of America, 1994,91(7):2517-2521.
[9] WILSON D K, BOHREN K M, GABBAY K H, et al. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications[J]. Science, 1992,257(5066):81-84.
[10] KHURANA S, POWERS D B, ANDERSON S, et al. Crystal structure of 2,5-diketo-D-gluconic acid reductase a complexed with nadph at 2.1-angstrom resolution[J]. Proceedings of the national academy of sciences of the United States of America, 1998,95(12):6768-6773.
[11] ELLIS E M. Microbial aldo-keto reductases[J]. Fems microbiology letters, 2002,216(2):123-131.
[12] LUO X, WANG Y J, ZHENG Y G. Cloning and characterization of a NADH-dependent aldo-keto reductase from a newly isolatedKluyveromyceslactisXP1461[J]. Enzyme and microbial technology, 2015,77:68-77.
[13] JEZ J M, BENNETT M J, SCHLEGEL B P, et al. Comparative anatomy of the aldo-keto reductase superfamily[J]. Biochemical journal, 1997, 326(2):625-636.
[14] WANG J F, WEI D Q, LIN Y, et al. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase ofPichiastipitisand its binding interactions with NAD and NADP[J]. Biochemical & biophysical research communications, 2007,359(2):323-329.
[15] COOPER W C, JIN Y, PENNING T M. Elucidation of a complete kinetic mechanism for a mammalian hydroxysteroid dehydrogenase (HSD) and identification of all enzyme forms on the reaction coordinate: the example of rat liver 3 alpha-HSD (AKR1C9)[J]. The journal of biological chemistry, 2007,282(46):33484-33493.
[16] REYES A C, AMYES T L, RICHARD J P. Enzyme architecture: a startling role for Asn270 in glycerol 3-phosphate dehydrogenase-catalyzed hydride transfer[J]. Biochemistry, 2016,55(10):1429-1432.
[17] HONG S H, NAM H K, KIM K R, et al. Molecular characterization of an aldo-keto reductase fromMarivirgatractuosathat converts retinal to retinol[J]. Journal of biotechnology, 2014,169(1):23-33.
[18] LIU X, WANG C, ZHANG L J, et al. Structural and mutational studies on an aldo-keto reductase AKR5C3 fromGluconobacteroxydans[J]. Protein science, 2014,23(11):1540-1549.
[19] MOHAMAD N L, KAMAL S M, MOKHTAR M N. Xylitol biological production: a review of recent studies[J]. Food reviews international, 2015,31(1):74-89.
[20] DASGUPTA D, BANDHU S, ADHIKARI D K, et al. Challenges and prospects of xylitol production with whole cell bio-catalysis: a review[J]. Microbiological research, 2017,197:9-21.
[21] KOGJE A, GHOSALKAR A. Xylitol production bySaccharomycescerevisiaeoverexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob[J]. 3 Biotechnology, 2016,6(2):127.
[22] PRATTER S M, EIXELSBERGER T, NIDETZKY B. Systematic strain construction and process development: xylitol production bySaccharomycescerevisiaeexpressingCandidatenuisxylose reductase in wild-type or mutant form[J]. Bioresource technology, 2015,198:732-738.
[23] KIM J S, PARK J B, JANG S W. Enhanced xylitol production by mutantKluyveromycesmarxianus36907-FMEL1 due to improved xylose reductase activity[J]. Applied biochemistry and biotechnology, 2015,176(7):1975-1984.
[24] ZHANG Y, LEE H. Site-directed mutagenesis of the cysteine residues in thePichiastipitisxylose reductase[J]. Fems microbiology letters, 1997,147(2):227-232.
[25] DAVIS R A, DERUITER J. Comparison of the catalytic and inhibitory properties ofPachysolentannophilusxylose reductase to rat lens aldose reductase[J]. Applied microbiology and biotechnology, 1992,37(1):109-113.
[26] YOKOYAMA S I, SUZUKI T, KAWAI K, et al. Purification, characterization and structure analysis of NADPH-dependent D-xylose reductases fromCandidatropicalis[J]. Journal of fermentation and bioengineering, 1995,79(3):217-223.
[27] MAYR P, NIDETZKY B. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase fromCandidatenuis[J]. Biochemical journal, 2002,366(3):889-899.
[28] WOODYER R, SIMURDIAK M, WA V D D, et al. Heterologous expression, purification, and characterization of a highly active xylose reductase fromNeurosporacrassa[J]. Applied and environmental microbiology, 2005,71(3):1642-1647.
[29] KUMAR S, GUMMADI S N. Purification and biochemical characterization of a moderately halotolerant NADPH dependent xylose reductase fromDebaryomycesnepalensisNCYC 3413[J]. Bioresource technology, 2011,102(20):9717.
[30] LEE J K, KOO B S, KIM S Y. Cloning and characterization of thexyl1 gene, encoding an NADH-preferring xylose reductase fromCandidaparapsilosis, and its functional expression inCandidatropicalis[J]. Applied environment and microbiology, 2003,69(10):6179-6188.
[31] KOMEDA H, YAMASAKI-YASHIKI S, HOSHINO K, et al. Identification and characterization of D-xylose reductase involved in pentose catabolism of the zygomycetous fungusRhizomucorpusillus[J]. Journal of bioscience and bioengineering, 2015,119(1):57-64.
[32] ZHANG M, JIANG S T, ZHENG Z, et al. Cloning, expression, and characterization of a novel xylose reductase fromRhizopusoryzae[J]. Journal of basic microbiology, 2015,55(7):907-921.
[33] DASGUPTA D, GHOSH D, BANDHU S, et al. Purification, characterization and molecular docking study of NADPH dependent xylose reductase from thermotolerantKluyveromycessp. IIPE453[J]. Process biochemistry, 2007,51(1):124-133.
[34] HANCOCK R D, VIOLA R. Biotechnological approaches for L-ascorbic acid production[J]. Trends in biotechnology, 2002,20(7):299-305.
[35] BREMUS C, HERRMANN U, BRINGER S. The use of microorganisms in L-ascorbic acid production[J]. Journal of biotechnology, 2006,124(1):196-205.
[36] MILLER J V, ESTELL D A, LAZARUS R A. Purification and characterization of 2,5-diketo-D-gluconate reductase fromCorynebacteriumsp.[J]. Journal of biological chemistry, 1987,262(19):9016-9020.
[37] SONOYAMA T, KOBAYASHI K. Purification and properties of two 2,5-diketo-D-gluconate reductases from a mutant strain derived fromCorynebacteriumsp.[J]. Journal of fermentation technology, 1987,65(3):311-317.
[38] ESCHENFELDT W H, STOLS L, ROSENBAUM H, et al. DNA from uncultured organisms as a source of 2,5-diketo-L-gluconic acid reductases[J]. Applied and environmental microbiology, 2001,67(9):4206-4214.
[39] SONOYAMA T, TANI H, MATSUDA K, et al. Production of 2-keto-l-gulonic acid from D-glucose by two-stage fermentation[J]. Applied and environmental microbiology, 1982,43(5):1064-1069.
[40] ANDERSON S, MARKS C B, LAZARUS R, et al. Production of 2-Keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a genetically modifiedErwiniaherbicola[J]. Science, 1985,230(4722):144-149.
[41] KASWURM V, PACHER C, KULBE K D, et al. 2,5-Diketo-gluconic acid reductase fromCorynebacteriumglutamicum: characterization of stability, catalytic properties and inhibition mechanism for use in vitamin C synthesis[J]. Process biochemistry, 2012,47(12):2012-2019.
[42] NESTL B M, NEBEL B A, HAUER B. Recent progress in industrial biocatalysis[J]. Current opinion in chemical biology, 2011,15(2):187-193.
[43] MATSUDA T, YAMANAKA R, NAKAMURA K. Recent progress in biocatalysis for asymmetric oxidation and reduction[J]. Tetrahedron-asymmetry, 2009,20(5):513-557.
[44] KITA K, NAKASE K, YANASE H. Purification and characterization of new aldehyde reductases fromSporobolomycessalmonicolorAKU4429[J]. Journal of molecular catalysis B: enzymatic, 1999,6(3):305-313.
[45] ASAKO H, WAKITA R, MATSUMURA K, et al. Purification and cDNA cloning of NADPH-dependent aldoketoreductase, involved in asymmetric reduction of methyl 4-bromo-3-oxobutyrate, fromPenicilliumcitrinumIFO4631[J]. Applied and environmental microbiology, 2005,71(2):1101-1104.
[46] MA Y H, LV D Q, ZHOU S, et al. Characterization of an aldo-keto
reductase fromThermotogamaritimawith high thermostability and a broad substrate spectrum[J]. Biotechnology letters, 2013,35(5):757-762.
[47] NING C, SU E, WEI D. Characterization and identification of three novel aldo-keto reductases fromLodderomyceselongisporusfor reducing ethyl 4-chloroacetoacetate[J]. Archives of biochemistry and biophysics, 2014,564:219-228.
[48] GUO R Y, NIE Y, MU X Q, et al. Genomic mining-based identification of novel stereospecific aldo-keto reductases toolbox fromCandidaparapsilosisfor highly enantioselective reduction of carbonyl compounds[J]. Journal of molecular catalysis B: enzymatic, 2014,105:66-73.
Structure,functionandbiocatalyticapplicationsofmicrobialaldo-ketoreductases
SHI Lizhen1,2, YING Bingbing1,2, WANG Yajun1,2
(1.Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Hangzhou 310014, China; 2.College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China)
As an important member of the aldo-keto reductase (AKR) superfamily, microbial AKRs exist in a wide range of microorganisms and perform oxidoreduction on a broad variety of natural and artificial ketone compounds. Usually, microbial AKRs are monomeric proteins with molecular weights around 37 kDa, containing the typical (α/β)8-barrel fold and a conserved coenzyme binding domain. All microbial AKRs obey the ordered bi-bi mechanism, driven by a tetrad of Asp-Tyr-Lys-His. Currently, microbial AKRs have been applied in the synthesis of xylitol, vitamin C immediate precursor 2-keto-L-gulonic acid and pharmaceutical intermediate chiral alcohols.
aldo-keto reductase; classification; structure; biocatalysis; chiral alcohol
2017-05-08
国家自然科学基金资助项目(21476209);浙江省公益技术研究项目(2014C33223)
史丽珍(1992—),女,河南洛阳人,硕士研究生,研究方向为生物化工,E-mail:13588399962@163.com.通信作者:王亚军教授,E-mail:wangyj@zjut.edu.cn.
Q814.2;O643.3
A
1674-2214(2017)04-0198-07
朱小惠)