李 月,张海浜,张晶晶,赵 昕,林 海
Eu(DBM)3Phen掺杂聚甲基丙烯酸甲酯静电纺丝荧光纤维
李 月,张海浜,张晶晶,赵 昕,林 海*
(大连工业大学 纺织与材料工程学院,辽宁 大连 116034)
通过静电纺丝技术获得直径约为700 nm,均匀且随机取向的亚微米级Eu(DBM)3Phen/PMMA纤维。在紫外光辐射下,亚微米级荧光纤维发出明亮的红色荧光。其激发光谱表明,荧光纤维有效激发波长范围为200~400 nm。利用积分球配以CCD 探测器,在367 nm长波紫外LED激发下对荧光纤维开展绝对光谱功率测试。当LED泵浦功率为535.76W时,厚度80m的Eu(DBM)3Phen/PMMA纤维薄层对紫外辐射的吸收率高达89%,350~850 nm范围内发射的总绝对光谱功率、总光子数和总荧光量子产率分别为36.56W、11.46×1013cps和12.94%。亚微米级Eu(DBM)3Phen/PMMA纤维薄层中,Eu3+较高的跃迁发射几率及较大的发射截面使得纤维可以高效吸收紫外辐射并转变为可见光,在提高太阳能电池光电转换效率方面具有潜在应用价值。
Eu(DBM)3Phen/PMMA纤维; 静电纺丝; 绝对光谱参数; 荧光量子产率
随着不可再生资源的大量消耗,可再生资源的研究和利用受到了人们广泛的关注,太阳能因其清洁性和可再生性日益成为人们研究的热点之一。太阳能电池由于光谱敏感区域狭窄,无法对大部分紫外辐射实现高效的光电转换,尤其对于染料敏化型太阳能电池而言,紫外辐射使染料产生光氧化效应,进一步削弱了对紫外辐射的吸收。基于此,利用光致荧光材料提高太阳能电池光电转换效率的方法激起了人们极大的研究兴趣[1-3]。其中,稀土有机配合物具有高的荧光量子效率,其有机配体在紫外区有较强的吸收,可以作为光转换材料引入到太阳能电池中[4-7]。通过稀土有机配合物与高分子聚合物复合,制备出具有直径小、比表面积大、孔隙率高、直径均匀的微纳米荧光纤维材料[8-19],可为增强太阳能电池转化效率提供新思路。
在本工作中,我们将Eu(DBM)3Phen配合物混合光透明性好、耐候性强和机械强度高的聚甲基丙烯酸甲酯(PMMA)在四氢呋喃(THF)和二甲基甲酰胺(DMF)中进行磁力搅拌获得均一透明溶液,通过静电纺丝技术制备成Eu-(DBM)3Phen/PMMA纤维。在扫描电镜下,观测到纤维直径均匀且随机取向。同时对纤维在不同条件下的光致发光特性进行研究,荧光光谱表明Eu(DBM)3Phen/PMMA纤维可将紫外辐射转换为更适合太阳能电池吸收利用的红光。利用积分球测试系统对纤维的发光性能进行表征,获得纤维的绝对光谱功率分布及光子数分布,并利用荧光量子产率以说明纤维中Eu3+的发光效率。实验结果表明,Eu(DBM)3Phen/PMMA荧光纤维可以有效吸收紫外辐射并将其转换成可见光,对进一步提高太阳能电池光电转换效率有重要的研究意义。
2.1 Eu( DBM)3Phen /PMMA纤维的制备
根据文献[20-21]制备Eu(DBM)3Phen,其为黄色粉末。称取质量比为50:1的聚甲基丙烯酸甲酯(PMMA)和Eu(DBM)3Phen,将其溶于体积比为1:1的四氢呋喃(THF)和二甲基甲酰胺(DMF)的混合溶液中。将混合物放入55 ℃恒温水浴锅至溶解后进行磁力搅拌,得到的均一透明的溶液即为纺丝溶液。静电纺丝装置示于图1。将纺丝溶液注入到喷丝头中,随着15.48 kV高压电源的运行以及喷丝头与接收装置的距离为12 cm,电场达到临界值,纺丝的PMMA溶液克服表面张力并由接收装置接收,形成Eu(DBM)3Phen/ PMMA纤维。
图1 静电纺丝装置图Fig .1 Schematic illustration of the basic setup for electrospinning
2.2 样品表征
采用F-7000荧光分光光度计(Hitachi),激发光源为150 W连续氙灯,测定样品的激发和发射光谱。采用日本电子JSM-7800F型扫描电子显微镜观测样品的微观形貌。利用内径为25 cm的积分球(Labsphere LMS-025)配以内芯直径为600 μm的功率光纤连接的CCD 探测器(Ocean Optics,USB4000和QE65000)测量Eu( DBM)3Phen/PMMA纤维的绝对光谱功率分布,系统采用工作电流20 mA、激发波长367 nm的长波紫外发光二极管,并用标准卤素灯(Labsphere,SCL-050)定标。纤维样品的发光照片由Sony DSC-T5照相机拍摄。
3.1 Eu( DBM)3Phen /PMMA纤维形态特征
纺丝溶液浓度是影响其粘度的关键因素,在电纺丝过程中起重要作用。对于Eu(DBM)3-Phen/PMMA复合材料来说,当PMMA的浓度低时(<80 mg/mL),可能形成一些珠粒;当PMMA的浓度太高时,则很少获得静电纺丝产物[22]。考虑以上因素,本工作中,PMMA在Eu(DBM)3-Phen/PMMA中的浓度为100 mg/mL,获得了Eu(DBM)3Phen/PMMA纤维。在自然光下,纤维呈白色絮状,如图2(a)所示,图2(b)为Eu-(DBM)3Phen/PMMA纤维的微观SEM照片。由图2(b)可以看出,复合材料样品形成了直径均匀的纤维且随机取向排列,这是由收集器静止且纺丝射流相关的弯曲不稳定性引起的。对形貌进一步分析,可以得出纤维的直径约为700 nm,归属于亚微米级。
图2 (a)自然光下静电纺纤维宏观形貌;(b)静电纺纤维的微观SEM照片。Fig.2 (a) Macro morphology of electrospinning fiber under natural light.(b) Microscopic SEM photograph of electrospun fibers.
3.2 激发和发射光谱
在274 nm和358 nm紫外激发下,纤维样品的可见荧光发射光谱如图3(a)和3(b)所示,图片反映了在紫外光激发下纤维能发出明亮的红色荧光。光谱中峰值位于578,590,611,651,704 nm的发射带分别归属于Eu3+从5D0到7FJ(J=0~4)的f-f 跃迁,其中在611 nm处的5D07F2电偶极跃迁发射最强[23-27]。图4为监测Eu3+离子611 nm处的激发光谱。发射谱带由2个激发峰组成,范围为200~400 nm,其峰值分别位于274 nm和358 nm,表明荧光纤维红光发射的有效激发波长几乎覆盖了整个紫外区且在274 nm和358 nm处激发最有效。
图3 Eu(DBM)3Phen/PMMA静电纺纤维的发射光谱。(a) λex=274 nm;(b) λex=358 nm。Fig.3 Emission spectra of Eu(DBM)3Phen/PMMA electrospun fibers.(a) λex=274 nm.(b) λex=358 nm.
图4 Eu(DBM)3Phen/PMMA纤维的激发光谱Fig.4 Excitation spectrum of Eu(DBM)3Phen/PMMA fibers
3.3 纤维的绝对光谱参数表征
光谱功率分布( Spectral power distribution)P(λ)的测量是发光材料参数计算和发光性能评估的基础。2.0%Eu(DBM)3Phen/PMMA纤维的光谱功率分布利用积分球测试系统测量。将夹在石英片之间的样品和空的石英片放于积分球中的LED泵浦源上,在367 nm 长波紫外LED激发下,记录Psam(样品功率)和Pemp(空白功率)。通过两者相减,获得如图5(a)所示的净光谱功率分布。当LED泵浦源的功率为535.76W时,积分获得样品的吸收和发射功率分别为476.51W和36.56W。
光量子分布N(ν)与净光谱功率分布P(λ)有如下关系:
(1)
式(1)中λ和ν分别为波长及波数,h为普朗克常数,c为真空中的光速,P(λ)是光谱功率分布。2.0%(质量分数)Eu(DBM)3Phen/PMMA纤维的净吸收和净发射光子分布曲线由公式(1)导出,其中净光量子数分布如图5(b)所示。
作为评估发光材料一个关键参数,量子产率(Quantum yield)的准确测量有助于深入理解材料的荧光特性。荧光量子产率(η)可表示为
(2)
在367 nm长波紫外LED的激发下,2.0%Eu(DBM)3Phen/PMMA纤维的荧光量子产率列于表1中,Eu(DBM)3Phen/PMMA纤维样品的总发射光子数为11.46×1013cps,总荧光量子产率为12.94%。其中Eu3+的5D07F2跃迁发射的光子数高达9.46×1013cps,量子产率为10.68%。
图5 在367nm 长波紫外LED激发下,Eu(DBM)3Phen/PMMA纤维的净光谱功率分布(a)和净光量子分布(b)。Fig.5 Net spectral power distribution(a) and net photon distributions (b) of Eu(DBM)3Phen/PMMA fibers under 367 nm UVA-LED excitation
表1 367 nm 长波紫外LED激发下Eu(DBM)3Phen/PMMA纤维的吸收和发射光子数和量子产率Tab.1 Absorption and emission photon number and quantum yield in Eu(DBM)3Phen/PMMA fibers under 367 nm UVA-LED excitation
Judd-Ofelt(J-O)强度参数Ωt(t=2,4,6)是评估稀土离子与基质相互作用的重要参数,在一定程度上反映了材料的结构性质[28-30]。由于Eu3+的特殊能级结构,可以通过发射光谱来计算纤维中Eu3+的J-O强场参数[31]。采用Metricon 2010棱镜耦合仪测定出体材料在635.96 nm和1 546.9 nm处的折射率分别为1.489 7 和1.478 4,根据公式n=A+B/λ2可进一步导出Eu-(DBM)3Phen/PMMA在其他波长处的折射率,式中A=1.475 0,B=5 743 nm2。 Eu(DBM)3Phen/PMMA纤维中Eu3+的强度参数Ωt(t=2,4,6)值分别为36.367×10-20,7.059×10-20,34.482×10-20cm2,其Ω2值明显强于Eu3+掺杂的 Na2O-ZnO-PbO-GeO2-TeO2玻璃 (Ω2=6.25×10-20)[29],反映出Eu3+离子周围环境具有较高的反演非对称性和较强的共价性。利用J-O强度参数计算出自发辐射几率Aij、荧光分支比βij和辐射寿命τrad并列于表2。Eu(DBM)3Phen/PMMA纤维中对应于5D07F2跃迁的荧光分支比β高达85.6%,表明Eu3+的5D07F2为主导发射。
受激发射截面σem是评估稀土掺杂光学材料能量提取效率的重要参数,可以通过Fuchtbauer-Ladenburg(FL)公式得出:
(3)
其中n、Arad和N(λ)分别表示折射率、自发跃迁几率和发射光子分布。在367 nm长波紫外LED的激发下,Eu3 +在Eu(DBM)3Phen/PMMA纤维中的受激发射截面σem示于图6。在纤维薄层中对应Eu3+的5D07F2跃迁的最大受激发射截面为13.12×10-21cm2,是Eu3+掺杂Na2O-ZnO-PbO-GeO2-TeO2玻璃(2.05×10-21)的6倍多[32],表明Eu3+在Eu(DBM)3Phen/PMMA纤维中具有优异的发射能力。
表2 Eu(DBM)3Phen/PMMA纤维中Eu3+的5D0自发辐射跃迁概率Aij、分支比βij和辐射寿命τradTab.2 Spontaneous transition probabilities Aij,branching ratio βij and calculated radiative lifetime τrad of 5D0 in Eu(DBM)3Phen/PMMA fibers
图6 Eu3 +在Eu(DBM)3Phen/PMMA纤维中的受激发射截面Fig.6 Emission cross-section of Eu3+ in Eu(DBM)3Phen/PMMA fibers
通过静电纺丝技术,利用THF和DMF混合溶剂,制备了直径约为700 nm,均匀且随机取向的亚微米级Eu(DBM)3Phen/PMMA荧光纤维。研究了不同条件下纤维的光致荧光特性。在紫外辐射下,亚微米纤维发出明亮的红色荧光,其有效激发波长范围为200~400 nm。采用积分球测试系统,在367长波紫外LED的激发下,对Eu(DBM)3Phen/PMMA纤维的发光性能进行表征,解析出纤维样品的绝对荧光特征参量。当LED泵浦源的功率为535.76W时,80m的Eu(DBM)3Phen/PMMA纤维薄层对紫外辐射的吸收率高达89%,350~850 nm范围内发射总光子数和总荧光量子产率分别为11.46×1013cps和12.94%,表明纤维可以发出效率较高的红色荧光。亚微米Eu(DBM)3Phen/PMMA纤维可有效吸收紫外辐射并转变为可见荧光,在提高太阳能电池光电转换效率方面有很大的应用潜力。
[1] HUANG X Y,HAN S Y,HUANG W,etal..Enhancing solar cell efficiency: the search for luminescent materials as spectral converters [J].Chem.Soc.Rev.,2013,42(1):173-201.
[2] XIN F X,ZHAO S L,HUANG L H,etal..Up-conversion luminescence of Er3+-doped glass ceramics containing β-NaGdF4nanocrystals for silicon solar cells [J].Mater.Lett.,2012,78:75-77.
[3] HO W J,YANG G C,SHEN Y T,etal..Improving efficiency of silicon solar cells using europium-doped silicate-phosphor layer by spin-on film coating [J].Appl.Surf.Sci.,2016,365:120-124.
[4] 程果,魏长平,任晓明,等.新型β-二酮配体及其Eu(Ⅲ)三元配合物的合成、表征及发光性能的研究 [J].光谱学与光谱分析,2011,31(9):2346-2349.CHENG G,WEI C P,REN X M,etal..Synthesis,characterization and luminescence properties of novel β-diketone and Eu(Ⅲ) ternary complex [J].Spectrosc.Spect.Anal.,2011,31(9):2346-2349.(in Chinese)
[5] YUE J Y,XIAO Y M,LI Y P,etal..Enhanced photovoltaic performances of the dye-sensitized solar cell by utilizing rare-earth modified tin oxide compact layer [J].Org.Electron.,2017,43:121-129.
[6] WU J H,WANG J L,LIN J M,etal..Dual functions of YF3:Eu3+for improving photovoltaic performance of dye-sensitized solar cells [J].Sci.Rep.,2013,3:2058-1-5.
[7] GAO B J,ZHANG D D,DONG T T.Preparation and photoluminescence properties of polymer-rare-earth complexes composed of bidentate Schiff-base-ligand-functionalized polysulfone and Eu(Ⅲ) ion [J].J.Phys.Chem.C,2015,119(29):16403-16413.
[8] HUANG C B,CHEN S L,LAI C L,etal..Electrospun polymer nanofibres with small diameters [J].Nanotechnology,2006,17(6):1558-1563.
[9] CUI X,ZHANG H M,WU T F.Electrospinning preparation and photoluminescence properties of erbium complex doped composite fibers [J].Spectrochim.Acta.A,2011,79(5):1998-2002.
[10] YIN H X,LONG Y Z,YU F,etal..Electrospun europium complex/polymer composite microfibers and its modified photoluminescence properties [J].Mat.Sci.Forum,2011,688:74-79.
[11] 吴胜男,陈永杰,邢贞方,等.稀土铕-芳香羧酸-邻菲罗啉三元有机配合物的合成、表征及发光性能 [J].光学学报,2015,35(1):305-312.WU S N,CHEN Y J,XING Z F,etal..Synthesis,characterization,and luminescence properties of rare-earth europium aromatic carboxylate organic complexes with 1,10-phenanthroline [J].ActaOpt.Sinica,2015,35(1):305-312.(in Chinese)
[12] GU H Q,HOU Y J,XU F,etal..Electrospinning preparation,thermal,and luminescence properties of Eu2(BTP)3(Phen)2complex doped in PMMA [J].ColloidPolym.Sci.,2015,293(8):2201-2208.
[13] HUANG Z M,ZHANG Y Z,KOTAKI M,etal..A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J].Compos.Sci.Technol.,2003,63(15):2223-2253.
[14] ZHAO F L,XI P,XIA H Y,etal..Luminescent polymethacrylate composite nanofibers containing a benzoic acid rare earth complex: morphology and luminescence properties [J].J.AlloysCompd.,2015,641:132-138.
[15] YU H Q,WANG H D,LI Y,etal..Electrospinning preparation and luminescence properties of terbium complex/polymer composite fibers [J].J.Nanosci.Nanotechnol.,2014,14(5):3914-3918.
[16] ZHOU X J,MA Q L,DONG X T,etal..Dy3+and Eu3+complexes co-doped flexible composite nanofibers to achieve tunable fluorescent color [J].J.Mater.Sci.:Mater.Electron.,2015,26(5):3112-3118.
[17] ZHANG X P,WEN S P,HU S,etal..Electrospinning preparation and luminescence properties of Eu(TTA)3phen/polystyrene composite nanofibers [J].J.RareEarth,2010,28(3):333-339.
[18] JIA Y T,HUANG G,DONG F C,etal..Preparation and characterization of electrospun poly(ε-caprolactone)/poly(vinyl pyrrolidone) nanofiber composites containing silver particles [J].Polym.Compos.,2016,37(9):2847-2854.
[19] SHI Q S,LIU Z R,JIN X Y,etal..Electrospun fibers based on polyvinyl pyrrolidone/Eu-polyethylene glycol as phase change luminescence materials [J].Mater.Lett.,2015,147:113-115.
[20] LUO Y H,YU X W,SU W,etal..Energy transfer in a ternary system composed of Tb(DBM)3Phen,Eu(DBM)3Phen,and poly(N-vinylcarbazole) [J].J.Mater.Res.,2009,24(10):3023-3031.
[21] 叶钊,段佩华,张继森,等.稀土配合物Eu(DBM)3phen/聚丙烯复合薄膜的光学性质 [J].发光学报,2010,31(4):585-589.YE Z,DUAN P H,ZHANG J S,etal..Optical spectra of thin composite Eu(DBM)3phen/polypropylene film [J].Chin.J.Lumin.,2010,31(4):585-589.(in Chinese)
[22] YU H Q,LI Y,LI C,etal..Fabrication of aligned Eu(TTA)3phen/PS fiber bundles from high molecular weight polymer solution by electrospinning [J].Russ.J.Phys.Chem.A,2015,89(13):2455-2460.
[23] LI J,CHEN L,ZHANG J H,etal..Photoluminescence properties of a novel red-emitting phosphor Eu3+activated scandium molybdate for white light emitting diodes [J].Mater.Res.Bull.,2016,83:290-293.
[24] LI X,PAN H,TANG A W,etal..Hydrothermal synthesis and luminescent properties of Eu3+doped Sr3Al2O6phosphor for white LED [J].J.Nanosci.Nanotechnol.,2016,16(4):3474-3479.
[25] FEI Y,ZHAO S L,SUN X,etal..Preparation and optical properties of Eu3+doped and Er3+/Yb3+codoped oxyfluoride glass ceramics containing Ba1-xLuxF2+xnanocrystals [J].J.Non-Cryst.Solids,2015,428:20-25.
[26] LI P L,WANG Z J,YANG Z P,etal..Ba2B2O5:Eu3+: a novel red emitting phosphor for white LEDs [J].Opt.Mater.,2014,39:269-272.
[27] ZHANG J,SONG F,LIN S X,etal..Tunable fluorescence lifetime of Eu-PMMA films with plasmonic nanostructures for multiplexing [J].Opt.Express,2016,24(8):8228-8236.
[28] 牛春晖,任宣玮,李晓英,等.YNbO4粉末材料中Er3+发光研究及其光谱性质J-O计算 [J].发光学报,2016,37(5):519-525.NIU C H,REN X W,LI X Y,etal..Luminescence characteristics of Er3+in YNbO4powder materials and J-O calculation of its spectrum [J].Chin.J.Lumin.,2016,37(5):519-525.(in Chinese)
[29] 王芙香,裴松皓,彭慰先,等.透明光学树脂中Eu3+辐射参数的理论和实验研究 [J].光谱学与光谱分析,2006,26(2):248-250.WANG F X,PEI S H,PENG W X,etal..Study on the theory and experiments of radiative parameters of the Eu3+ion in transparent optical resin [J].Spectrosc.Spect.Anal.,2006,26(2):248-250.(in Chinese)
[30] 王欣,李科峰,凡思军,等.Tm3+掺杂Bi2O3-SiO2-PbO玻璃的~2 μm发光光谱性质 [J].无机材料学报,2013,28(2):165-170.WANG X,LI K F,FAN S J,etal..Spectral properties of ~2 μm emission of Tm3+doped Bi2O3-SiO2-PbO glass [J].J.Inorg.Mater.,2013,28(2):165-170.(in Chinese)
[31] CHANG M Q,SHENG Y,SONG Y H,etal..Luminescence properties and Judd-Ofelt analysis of TiO2:Eu3+nanofibersviapolymer-based electrospinning method [J].RSCAdv.,2016,57(6):52113-52121.
[32] WANG F,SHEN L F,CHEN B J,etal..Broadband fluorescence emission of Eu3+doped germanotellurite glasses for fiber-based irradiation light sources [J].Opt.Mater.Express,2013,3(11):1931-1943.
李月(1992-),女,河北衡水人,硕士研究生,2016年于华北水利水电大学获得学士学位,主要从事稀土掺杂发光材料的研究。
E-mail:18703662774@163.com
林海(1968-),男,吉林长春人,博士,教授,1999年于中国科学院长春物理研究所获得博士学位,主要从事光电子材料与器件的研究。
E-mail:lhai@dlpu.edu.cn
Eu(DBM)3Phen Doped Poly Methyl Methacrylate Electrospun Fluorescence Fibers
LI Yue,ZHANG Hai-bang,ZHANG Jing-jing,ZHAO Xin,LIN Hai*
(SchoolofTextileandMaterialEngineering,DalianPolytechnicUniversity,Dalian116034,China)
Eu(DBM)3Phen/PMMA fibers with uniform and random orientation were obtained by electrospinning method.The diameter of the fiber is about 700 nm assigned to submicron.Under ultraviolet irradiation,the submicron fluorescent fiber emits bright red fluorescence,and its excitation spectrum shows that the effective excitation wavelength is 200-400 nm.The absolute spectral power was carried out by using an integrating sphere with a CCD detector at 367 nm UVA-LED.When the power of LED pump is 535.76W,Eu(DBM)3Phen/PMMA thin fiber layer with 80 μm is up to 89% in ultraviolet absorbing,and the total absolute spectral power,emission photon number and fluorescence quantum yield in the range of 350-850 nm are 36.56W,11.46×1013cps and 12.94%,respectively.The higher transition probability and emission cross-section of Eu3+allow the fiber to absorb ultraviolet radiation effectively and convert it into visible light,therefore submicron Eu-(DBM)3Phen/PMMA thin fiber layer has great application prospects in the improvement of solar cell conversion efficiency.
Eu(DBM)3Phen/PMMA fibers; electrospinning; absolute spectral parameters; fluorescence quantum yield
1000-7032(2017)09-1136-07
2017-02-22;
2017-04-12
国家自然科学基金(61275057)资助项目
TQ342.8; O433
A
10.3788/fgxb20173809.1136
*CorrespondingAuthor,E-mail:lhai@dlpu.edu.cn
Supported by National Natural Science Foundation of China (61275057)