三角函数在解题中的应用研究

2017-08-21 21:34余升璟郭玲
魅力中国 2017年22期
关键词:三角函数

余升璟++郭玲

摘 要:三角函数是重要的数学公式之一。它的综合运用主要是,简化数学运算和沟通形和数之间的关系。本文主要阐述了三角函数在中学数学解题中的应用,在解中学代数或几何问题时对其进行三角代换,再结合三角函数的定义、定理、性质等进行解题,用三角函数解题不仅可以化繁为简,还可以启发学生的思维,开拓学生的解题思路,从而提高学生分析问题解决问题的能力。-------

关键词:三角函数;三角代换;三角函数线

文中进一步研究三角函数在中学解题中的应用,特别是其它数学问题中的应用,探究其在解题中作为“工具”的功能。

一、三角函数在求解代数问题中的应用。

三角函数在代数问题中的应用就是把代数式转换成三角表达式,变代数问题为三角问题去求解,这就是三角代换法解代数问题,运用这个方法,不但能使某些代数题的解法化难为易,化繁为简,而且能帮助我们沟通数学中不同学科之间的知识和方法,提高分析问题和解决问题的能力。

用三角代换法解代数问题的关键是设法选择合适的三角函数进行代换,由于三角代换是用三角函数去代换代数中的变数所以选择三角函数时,首先应从题中变数的允许值去考虑,再从解题的需要通过分析选择合适的三角函数进行代换。在进行三角代换后再根据所求问题采取对应的三角函数的性质进行求解。

一般来说,形如 或 可用 、 或 、 进行代换;形如 或 可用 、 或 、 进行代换;形如 可用 或 进行代换;形如 可用 或 进行代换等等。也可以根据其结构特征用三角函数公式进行代换:比如形如 因与 的结构相似可以用 进行代换; 形如 與 的结构相似可以用 进行代换; 再结合代换后三角函数的定义、性质、定理对题进行求解。

二、三角函数在求解几何问题中的应用。

三角法解几何题,就是将几何问题转化为三角函数问题,运用三角学的知识来完成几何命题证明或及方法。

某些平面几何题,线段与线段,角与角,线段与角的关系比较复杂,单纯采用几何的知识进行证明解答,有时不易找到证明解答0的途径,如改用三角法来证,不仅证明过程简捷,而且证明思路也比较自然,易于达到证题。

(一)解三角形

1.判定三角形的形状

判断三角形的形状,推理时要注意三点:(1)利用正弦或余弦定理,把已知恒等式中的变化为角,再利用三角公式加以证明;或把角化为变,再用代数公式加以证明;(2)判断的完整性。如△ABC中,若sin2A=sin2B则A=B,或A+B=90°,可得△ABC为等腰三角形或直角三角形;(3)一般情况下,判断三角形的条件是充要的,因此可以用逆推的方法;

(二)解三角形

解三角形是用三角函数研究几何图形的基础,在解题过程中应注意三点。

(1)掌握三角形中非基元素(如三角形的内切圆半径,外接圆半径,三角形的面积)

(2)已知三角形中的三个元素(其中至少有一条边),就可以求出其他元素,如果在解题过程中,多设一个中间变量,就多用一个三角形,从而多列出一个方程;

(3)在解立体几何或解析几何等问题时,必须充分运用几何图形的性质。

(三)结合解析法研究几何图形

在用解析法研究几何图形时,利用解三角形的方法,可以减少解题的运算量;利用含有三角函数式的极坐标方程,有利于求曲线的轨迹和研究圆锥的共同属性;利用含参数角的参数方程,便于建立几何量间的函数解析式。

三、求几何量的最大值和最小值

在解最大值,最小值问题时采取的步骤是:先设变量(如选择参数角),再根据图形的特征建立目标函数,然后求函数的最大(小)。因为 都有界,所以可适当变换,将解析几何最值问题转化为三角函数的最值问题,以求得最值,如若 ,则函数 有最大值 ,最小值 解题的关键是,灵活地选择参数,运用解析法或解三角形方法,建立函数的解析式。

例1设过圆 上的一点A( )的直线与圆交于另一点P

( ),试求 的最大值与最小值,又当 取最大值和最小值时,P点位置如何?

解 如图示,设AP的倾斜角为 ,连接OP,令 ,则 .圆的参数方程 ( 为参数),则

)= .

当 时, P点坐标( ).当 时,( ) P点坐标 .

四、三角函数线在解题中的应用

三角函数线是三角函数的几何形式,它的功能就是使角的三角函数值通过有向线段直观地表示出来,使抽象的函数变得具体,便于在动态中对三角函数进行研究和应用,用它来处理三角函数中的某些问题,可得到明快简捷的解答。同时又可以加强代数,三角,几何间的联系。

结论

本文主要探讨三角函数的应用,它不仅用于函数中,而且在不等式,解析几何等都有着重要的作用。利用三角函数的思想解题可以使问题变得简单,达到意想不到的效果。 如在解决代数问题时,适当的应用三角代换不仅可以化繁为简,还可以启发学生的思维,开拓学生的接替思路,提高学生的分析问题和解决问题的能力,在选择利用三角换元时,要从函数问题中字母的允许范围来考虑选择合适的三角公式,使已知条件与所求的结论通过“三角代换”建立恰当的联进行沟通转化。

参考文献:

[1]赵广华,三角代换在解题中的应用[J],上海中学数学。2005(4):43

[2]周 斌,三角法在解代数题中的应用[J],数学大世界。2003(3):32

[3]戚德江,张新全,谈三角代换解题[J],中学数学教学。2003(5):39

猜你喜欢
三角函数
高中数学三角函数教学的实践探析
高中数学三角函数的解题技巧
试分析高中三角函数问题与解题技巧
归类探究三角函数中的求最值(或值域)问题
关于高中三角函数的学习心得
三角函数问题中的数学思想
高中数学教学方法略谈
略谈高中数学三角函数学习
三角函数中辅助角公式的推导及应用
三角函数最值问题