李建华,包晓翔,刘凯,李锋
(中国航天空气动力技术研究院 彩虹无人机科技有限公司,北京 100074)
扩压式双S隐身进气道设计和流场分析
李建华,包晓翔,刘凯,李锋
(中国航天空气动力技术研究院 彩虹无人机科技有限公司,北京 100074)
采用扩压式双S隐身进气道能够提高飞行器的隐身特性和综合性能。针对保形短程、高隐身、大偏距的亚音速隐身无人机进气道,以保形入口、中间控制面和出口截面为约束并结合多项式对中心线和面积、截面形状进行控制,实现对保形进口截面形状和弯曲形式复杂的双S隐身进气道的快速设计;在此基础上,研究中心线曲率、面积分布和中间截面形状等参数对进气道性能的影响。结果表明:双S进气道流场特性复杂,第二S弯处顶部的分离和空间二次涡引发的流场畸变的综合控制是设计的重点,通过截面参数约束并结合多项式能够对双S进气道内的流场品质进行控制;在中心线曲率、扩张角和多项式参数等配制上应该朝利于第二S弯流场稳定的方向靠近。
双S进气道;短程扩压;总压恢复系数;畸变指数
现代无人飞行器普遍追求外形一体化设计、具有简单紧凑的结构形式和高电磁隐身性能,为此,其进气道设计逐渐趋于非常规化和多样化,各种非传统的设计技术不断得到尝试和应用,例如,进口与机身保形[1]、采用超短扩压器、采用大偏距单S形或双S(蛇形)进气道、无边界层隔道[2]、狭缝式进口[3-4]和背负式安装设计等。
超短程扩压式S形进气道是隐身飞机的重点发展方向之一,采用该形式的进气道,除了能够提高飞行器的隐身性能外,还有利于减小气动阻力、缩短飞行器的总长度,使得飞行器更加紧凑、质量更轻,从而大幅提高飞行器的综合性能。然而,S形进气道内的流场特性十分复杂,主要表现在:在大曲率弯曲段,由于存在强逆压梯度,会导致出现流动分离;严重的横向流压力梯度将诱导产生二次流,二次流与管壁附面层相互干扰,继而可能诱发脱体涡;由于流动分离和二次流及其诱导脱体涡的共同作用,会导致严重的压力损失和流动畸变。
20世纪70~80年代,国外就对S形进气道的流场特性进行了广泛研究。例如,1982年,J.P.Sullivan等[5]对某S形进气道进行流场研究,发现在进气道第一弯段底部产生了严重的二次流动流场,且第一弯段产生的二次流发展到出口截面处更强;C.C.Lee等[6]在对S形进气道流场特性深刻理解的基础上,开展了隐身飞机短程和大偏距S形隐身进气道的设计,提出利用中心线和面积分布规律来控制分离和二次流特性,结果表明利用此方法能够得到满意的进气道性能。国内对S形进气道流场特性的研究起步稍晚。20世纪80年代,林麒等[7]针对S形进气道内的流场特性开展了一系列研究,包括扩压程度、侧偏距、截面形状等参数对进气道性能的影响等。总体而言,国内大多数关于S形隐身进气道的研究均沿用了C.C.Lee等[6]提出的基于涡流控制的设计思想。
目前,多数研究均基于单S形隐身进气道,但受飞机规模等因素的限制,考虑对发动机的遮挡,需要把进气道设计成双S形(蛇形进气道)。研究表明,双S进气道在大流量条件下分离和掺混严重[8],故需要对双S进气道内的流场进行流动控制。S.Sun等[9]针对某双S进气道的试验发现,在气流分离和截面二次流的共同作用下,进气道出口截面的上方存在较大的低压区,其周向畸变高达11.7%,远超过一般发动机的承受范围。
本文结合某型无人机的基本约束,进行双S隐身进气道的设计,在实现对保形进口截面形状和弯曲形式复杂进气道的快速设计的基础上,研究中心线曲率、面积分布、中间截面形状和前后S段长度分布等参数对进气道性能影响;通过对第二S弯顶部分离和空间二次涡的综合控制提高进气道性能,进而完成进气道的初步设计。
数值计算程序采用有限体积法对雷诺平均三维Navier-Stokes方程进行离散,无黏对流通量采用Roe格式进行裂解,黏性通量采用二阶中心差分格式进行离散。为了能够准确模拟进气道的分离流动,根据B.A.Ahribi等[10]对S形进气道的数值模拟结果,湍流模型采用k-ωSST(Shear Stress Transport)模型。为了验证数值方法的有效性,选用G.J.Harloff等[11]所采用的S形进气道模型进行验证,该模型已在ONERA R4MA进行了风洞试验,具有比较完整的试验数据。数值模拟采用半模,网格数量约为100万,根据文献[10]的研究结果,控制第一层网格间距使进气道壁面处最大y+≈1,入口为压力进口边界(给定总压和总温)、出口边界为压力出口,调节出口压力使进气道流量与试验模型一致(半模质量流量为1.213 5 kg/s)。试验数据与数值模拟的对比如图1所示,可以看出:CFD数值模拟的上下壁面压力分布和试验趋势一致,表明本文所采用的数值方法对S形进气道进行模拟是适用的。
考虑某型无人机的总体空间约束及其配置动力参数,本文在来流马赫数为0.6,飞行高度为10 km环境下,分析不同中心线曲率、面积分布、中间截面形状等参数对双S进气道流场特性和性能的影响,进而完成对进气道的初步设计。
2.1 设计方法和方案描述
无人机外形一体化及隐身等方面的需求给现有的进气道型面生成方法带来了极大困难,传统的皮托式、S 弯进气道设计方法难以完成对上述复杂变截面进气道的设计,也不便于对内通道沿程的面积规律、扩散角规律和截面形状等进行分析和控制。因此,亟需对该类进气道的设计方法进行研究,以满足气动、隐身及总体布局等多方面的约束要求。
国内外对单S形进气道中心线和面积分布的研究已较为成熟。例如,C.C.Lee等[6]提出S形进气道三条中心线和面积分布的构造方法;屠秋野等[12]构造了不同的中心线方程以研究其对流场特性的影响;周慧晨等[3]则利用高阶多项式方程实现了复杂截面的生成,但其基于入口和出口型面以及构造多项式的复杂型面的设计方法仍存在缺陷,对中间过渡型面的控制偏弱。而现有研究对双S进气道约束条件的研究不足。双S进气道前后S内的流场特性差异较大,需要引入新的约束条件并构造新的多项式以满足进气道的设计要求。
本文结合单S进气道中心线和面积分布的研究成果,在复杂截面设计方法[3]的基础上,考虑飞机总体设计和隐身要求,引入中间控制截面,并通过调整中间截面参数达到对中心线、面积分布和截面型面进行控制的目的;同时,将构建高阶多项式的方法扩展到对复杂变截面形状、中心线曲率以及面积分布的综合控制,能够快速生成和调整进气道外形,即把已有的成熟S型进气道设计技术拓展到复杂型面的双S进气道设计。
具体设计方法如下:
(1) 构建高阶多项式(以五阶为例)。
y=Ax5+Bx4+Cx3+Dx2+Ex+F
0≤x=xs/Ls≤1
0≤y=ys/Ys≤1
约束条件由(0,0)、(1,1)、(xm,ym)条件给定,(0,0)、(1,1)分别为入口和出口约束条件,控制点(xm,ym)决定线型的形状。
根据流场特性和进气道外形控制的需要,可以构造更高阶的多项式,对于阶数大于约束条件的多项式,可以通过给定多项式常数进一步控制曲线的线形,例如,利用不同多项式系数A得到的线型如图2所示。
若控制参数(x,y)不同,则构造出的高阶多项式对应的物理意义不同,例如,y为垂直位置、面积和截面某点的曲率(x对应为轴向位置坐标、中心线位置以及截面的周向位置),则多项式分别实现对中心线、截面面积和截面形状的控制。利用该方法能够轻易实现常规单S进气道的“前急后缓、前后缓急相当以及前缓后急”的中心线曲率和面积分布控制。
针对截面形状、面积规律以及中心线分布的需要,通过应用不同曲线阶数和多项式常数,便可实现对截面形状、面积规律以及中心线分布的综合设计,可为下一步进行进气道性能的分析奠定基础。复杂变截面进气道效果图如图3所示。
(2) 考虑与气动布局的融合,本文设计的进气道入口形状为梯形,总体空间约束为进气道的长度和侧偏距,根据隐身全遮挡的要求,确定中心线最低点高度的位置。据此,由中间给定位置截面给出控制点的约束条件;由进气道入口保形截面、中间截面和出口截面的位置、面积和形状组成约束来控制进气道形状;通过改变中间截面的参数并结合多项式形式完成对复杂进气道的综合设计。
通过不同的中间控制截面参数(如表1所示)生成不同的进气道,本文共完成了六个进气道的设计。表1中,控制点位置表示控制截面所处的轴向位置;控制面面积比表示相对于入口面积扩张的比例,即(Smid-Sin)/(Sout-Sin);第一/第二S弯侧偏距表示中间截面前/后段S弯对出口直径的比值。
表1 进气道参数分布
2.2 设计结果分析
以无人机所需最大流量作为计算要求,对上述六种进气道设计方案进行数值模拟,入口为压力进口边界(按照高度为10 km,来流马赫数为0.6给定总压和总温)、出口边界为压力出口,调节出口压力使进气道流量与发动机工作流量一致(本文为20 kg/s)。
采用总压恢复系数和周向畸变指数(含总压畸变指数DC60)并结合流场特性对进气道进行分析。不同方案出口处的总压分布及表面流线如图4所示,方案1的对称面压力分布及表面流线如图5所示,方案5和方案6中间截面的压力分布如图6所示。
从图4~图6可以看出:
(1) 方案1在第一段S弯的作用下中间截面上下表面存在压差,最低压出现在上表面对称面处,同时具有周向压差,具备类似单S进气道底部出现强对涡的条件;受到第二段S弯上抬曲率和主流的影响,下游下表面低压未能使其底部涡进一步发展,反而在上表面因沿流线方向曲线扩张而使流速降低,形成低速气流或分离流,加之周向压力梯度的存在,侧向气流向对称面低速气流进行补充,并在主流作用下向下发展形成集中涡流,即双S进气道第二S弯上壁面易产生严重的分离和强集中涡的原因;方案1的对称面表面流线虽然具有回流区,但其流谱和常规分离流不同,并未形成完整的循环,而是出现流体“源”不断发出,表明在进气道对称面的两侧不断有流体向此区域补充。随着中心线曲率、面积和前后S段长度分布参数的改变,进气道内的流场也发生相应的改变。
(2) 方案3的第二S段中心线曲率由“前急后缓”变为“前缓后急”,使其出口顶部的漩涡得到加强。
(3) 针对方案1出口顶部漩涡较强导致周向畸变过大,其进气道底部也未像单S进气道那样发生分离及强二次涡等问题,通过减小第二S段扩张角(相应地增大第一S段扩张角,改变面积分布)、减小第二S段中心线曲率、同时减小第一S段侧偏距等方式来改变流场特性,形成方案2、方案4和方案5。相对于方案1,方案2、方案4和方案5出口顶部的涡流得到改善,总压恢复系数得到提高,周向畸变降低,但方案5底部侧下方出现漩涡流动。
(4) 为了进一步研究进气道参数对流场特性和进气品质的影响,中间控制截面由2∶1的椭圆变为3∶1的椭圆,截面高度变窄对隐身遮挡更加有利,进气道侧偏距适当缩小形成方案6。在中间截面和侧偏距的综合作用下,方案6的进气道出口顶部的涡流进一步改善,同时底部二次流也进一步得到加强。
(5) 虽然方案5和方案6出口截面顶部和底部具有涡共存流场的形态,但二者的流场特性差异明显,方案5(包括方案1~方案4)因中间截面上下压差以及第二S段顶部曲率的影响,形成以进气道顶部漩涡为主的流场形态,随着涡强度的减弱,以及中间截面下游底部低压造成的周向压差的作用,逐步诱导出底部的二次涡流,形成以顶部为主、底部涡同时存在流场形态;方案6由于侧偏距减小等因素,顶部涡流场得到改善,但其截面形状却造成上下表面存在压差的区域增大、在侧向底面的周向压差以及前方底角涡流的共同影响下,底部主体涡得到加强,形成以底部二次流为主,顶部和底部涡共存的流场形态,其形成机理更接近单S进气道。
不同方案60°角内平均总压分布(质量平均)随周向的分布情况如图7所示,可以看出:方案1~方案4最低总压出现在顶部涡流控制区域,方案5底部二次流逐渐发展,方案6底部的二次涡已经强于顶部,最低总压也由底部二次涡控制。
单S进气道受曲率和周向压力的影响,主要在进气道出口底部形成很强的对涡结构[5]。本文数值研究结果表明,双S进气道和单S进气道的流场特性存在较大差异,在某些参数匹配下,双S进气道出口底部仍存在强对流涡;但受第二段S弯的顶部曲率及周向横流影响,在进气道顶部会较易出现分离并形成集中对流涡,严重时还会诱发二次流,呈现多组对涡的复杂流场特性,从而影响进气道性能。
不同方案的性能评价结果如表2所示。
表2 进气道性能计算结果
从表2可以看出:虽然初步设计方案的进气道均具有较高的总压恢复系数,但方案1~方案4由于存在强顶部涡,影响其周向畸变指数,尤其是方案3畸变指数(DC60)高达0.67;方案5在中心线线型、面积分布以及侧偏距等综合参数控制下,顶部涡流场情况得到改善,周向畸变指数降低;方案6在顶部和底部涡共存作用下,周向畸变指数进一步降低,但底部二次涡的增强影响了总压恢复系数。
综上所述,相对于单S进气道,双S隐身进气道的影响参数更多、流场特性更加复杂;但单S进气道成熟的基于涡流控制的设计思想对双S进气道仍适用,利用此方法对双S进气道尤其是在第二S弯顶部分离和空间二次涡(包括顶部和底部涡流)的控制上,能够提高进气道的综合性能。
(1) 以进气道保形入口、中间控制截面以及出口的位置、面积和形状为约束,运用多项式对中心线、面积以及截面形状设计技术,能够快速实现对保形进口截面和弯曲形式复杂的隐身双S进气道的设计。
(2) 双S进气道设计时受影响参数多,流场特性更加复杂,通过截面参数约束并结合多项式形式对复杂进气道综合设计,能对第二S弯处顶部的分离流和二次流特性进行控制。
(3) 第二S弯的存在对第一S弯流场起到“稳定”作用,在中心线曲率、扩张角和多项式参数等配置上可以朝利于第二S弯流场稳定的方向靠近。
[1] Collie W V, Burgun R, Heinzen S N, et al. Advanced propulsion system design and integration for a turbojet powered unmanned aerial vehicle[R]. AIAA-2003-0415, 2003.
[2] 谭慧俊, 郭荣伟. 一种背负式无附面层隔道进气道的数值模拟研究与实验验证[J]. 航空学报, 2004, 25(6): 540-545. Tan Huijun, Guo Rongwei. Numerical simulation investigation and experimental validation of a top-mounted diverterless inlet and its validation[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(6): 540-545.(in Chinese)
[3] 周慧晨, 谭慧俊, 李湘萍. 复杂变截面进气道的一种设计方法[J]. 航空动力学报, 2009, 24(6): 1357-1363. Zhou Huichen, Tan Huijun, Li Xiangping. Unique design method of subsonic inlet with complex cross-sectional shape[J]. Journal of Aerospace Power, 2009, 24(6): 1357-1363.(in Chinese)
[4] 张航, 谭慧俊, 李湘萍. 类X-47狭缝式进气道的流动特征与工作性能[J]. 航空学报, 2009, 30(12): 2243-2249. Zhang Hang, Tan Huijun, Li Xiangping. Flow structure and performance characteristics of X-47-like Slot-shaped inlet[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2243-2249.(in Chinese)
[5] Sullivan J P, Murthy S N B, Davis R, et al. S-shaped duct flows[R]. Office of Naval Research Contract Number N-78-C-0710, USA: 1982.
[6] Lee C C, Boedicker C. Subsonic diffuser design and performance for advanced fighter aircraft[J]. AIAA-85-3073, 1985.
[7] 林麒, 郭荣伟. 大攻角下矩形变圆形截面的S形进气道的内流特性[J]. 空气动力学学报, 1989, 7(2): 220-226. Lin Qi, Guo Rongwei. Flow characteristics in an S-shaped rectangularround diffuser at high incidence[J]. Acta Aerodynamica Sinica, 1989, 7(2): 220-226.(in Chinese)
[8] 李勇, 刘有云, 杨以民. 某型无人机进气道地面总压畸变与发动机匹配性分析[C]∥第六届中国航空学会青年科技论坛文集(下册), 2014. Li Yong, Liu Youyun, Yang Yimin. Matching analysis about the total pressure distortion of the unmanned aircraft intake duct and the Aero-engine[C]∥The Sixth China Aviation Institute of Youth Science and Technology Forum(2), 2014.(in Chinese)
[9] Sun S, Guo R W. Numerical analysis and experimental validation of a submerged inlet on the plane surface[J]. Chinese Journal of Aeronautics, 2005, 18(3): 199-205.
[10] Ahribi B A, Sreenivas K, Webster R S. Computational investigation of cmpressible flow in a diffusing S-duct[J]. AIAA-2013-3601, 2013.
[11] Harloff G J, Reichert B A,Wellbron S R. Navier-Stokes analysis and experimental data comparison of compressible flow in a diffusing S-duct[J]. AIAA-92-2699, 1992.
[12] 屠秋野, 胡伟瀚, 陈劼. S形进气道中心线方程构造及其影响的研究[J]. 航空工程进展, 2013, 3(4): 376-380. Tu Qiuye, Hu Weihan, Chen Jie. S-shaped intake central line equation construction and study of its implications[J]. Advances in Aeronautical Science and Engineering, 2013, 3(4): 376-380.(in Chinese)
(编辑:马文静)
Investigation on the Design and Flow Characteristics of Diffusing Double-S Inlets
Li Jianhua, Bao Xiaoxiang, Liu Kai, Li Feng
(Rainbow UAV Technology Co., Ltd., China Academy of Aerospace Aerodynamics, Beijing 100074, China)
Diffusing double-S inlets are of particular interest in the aircraft design due to their ability of reducing the radar signature and drag. Surface composition of the compact and offset bend double-S inlet can be quickly accomplished with a polynomial central line, along with complex conformal intake, midsection and outlet shape. Six ducts are created and multi-parameters which include centerline curvature, area ratio and middle-cross-sectional shape are analyzed utilizing that method to study their effects on duct performance. Results indicate the approach of a polynomial central line and cross-sectional shape is effective in the double-S inlet design and that there are more complex flow structures in the double-S inlet compared with that in the S-duct inlet. Great emphasis should be placed on the control to the flow separation lying about the second S-bend and flow distortion arose by eddy, those parameters of central line curvature, expansion angle and polynomial should be chosen to beneficial the flow stability of the second S-bend.
double-S inlet; compact diffuser; total pressure recovery; flow distortion index
2017-01-11;
2017-03-25
包晓翔,baoxiaoxiang@foxmail.com
1674-8190(2017)02-219-07
V211.3
A
10.16615/j.cnki.1674-8190.2017.02.015
李建华(1977-),男,高级工程师。主要研究方向:无人机总体、气动设计。
包晓翔(1990-),男,工程师。主要研究方向:无人机总体、隐身设计。
刘 凯(1979-),男,高级工程师。主要研究方向:无人机总体设计。
李 锋(1961-),男,研究员。主要研究方向:空气动力学、飞行器总体设计。