马铃薯Y病毒科分子进化研究进展

2017-06-05 14:20陈春峰张志想李世访
植物保护 2017年3期
关键词:花叶病毒株系侵染

贺 振, 陈春峰, 张志想, 李世访*

(1. 扬州大学园艺与植物保护学院, 扬州 225009; 2. 中国农业科学院植物保护研究所,植物病虫害生物学国家重点实验室, 北京 100193)

专论与综述
Reviews

马铃薯Y病毒科分子进化研究进展

贺 振1,2, 陈春峰1, 张志想2, 李世访2*

(1. 扬州大学园艺与植物保护学院, 扬州 225009; 2. 中国农业科学院植物保护研究所,植物病虫害生物学国家重点实验室, 北京 100193)

马铃薯Y病毒科Potyviridae包括许多重要的植物病毒。本文综述了近年来该科马铃薯Y病毒属Potyvirus、甘薯病毒属Ipomovirus和禾草病毒属Poacevirus内20余种病毒的分子进化研究现状,从突变、重组、漂移、选择和迁移5个方面探讨了影响该科一些病毒分子进化的因素,并展望了未来的研究方向,以期为该科病毒的有效防控提供理论依据。

马铃薯Y病毒科; 分子进化

马铃薯Y病毒科Potyviridae是仅次于双生病毒科的第二大植物病毒科[1]。根据2014年ICTV修订的分类系统,该科包括8个属,分别为黑莓Y病毒属Brambyvirus、大麦黄花叶病毒属Bymovirus、甘薯病毒属Ipomovirus、柘橙病毒属Macluravirus、禾草病毒属Poacevirus、马铃薯Y病毒属Potyvirus、黑麦草花叶病毒属Rymovirus和小麦花叶病毒属Tritimovirus,共计190个确定种和暂定种[1]。马铃薯Y病毒科病毒(potyvirids)大多寄主范围广泛,常给农业生产带来严重危害。该科病毒粒体呈线状,直径约为11~15 nm;大部分potyvirids具有一个长约为650~950 nm的单分体基因组,仅bymoviruses例外,其具有双分体基因组,长度分别约为200~300 nm和500~600 nm。该科病毒基因组具有一个正单链RNA(positive-sense single-stranded RNA,+ssRNA)分子。单分体病毒大小约为8.0~11 kb;双分体病毒基因组大小分别约为7.5 kb和3.5 kb。通常,单分体potyvirids可经蚜虫、螨类和粉虱等介体传播,双分体的bymoviruses可通过真菌(禾谷多黏菌Polymyxagraminis)传播。此外,除bymoviruses外,大部分potyvirids可通过汁液摩擦传播,部分potyviruses还可以通过种子传播。

生物进化是生命科学研究的最基本问题之一。分子进化是指生物进化过程中生物大分子的演变现象。分子系统树是分子进化研究的核心领域。自1859年达尔文在其《物种起源》中描述了第一个表示物种进化关系的“树”(分支图解,branching diagram)以来,系统树已经广泛应用到生物分类与进化起源的研究中。110年后,植物病毒研究中最早的一个基于核酸的分子系统树由澳大利亚植物病毒学家Gibbs构建发表[2]。其后由于测序技术的限制,以核酸信息为依据的系统树分析在植物病毒研究领域进展缓慢。自20世纪90年代以来,随着测序技术的发展,大量的植物病毒基因组序列测定完成,基于植物病毒核酸信息的分子进化研究得到快速发展。本文综述了近20年来,20余种potyvirids的分子进化研究现状,以期加深对potyvirids种群结构与进化策略的理解,为设计合理的potyvirids病害防治策略提供依据。

1 马铃薯Y病毒属Potyvirus

1.1 马铃薯Y病毒PotatovirusY(PVY)

PVY寄主范围广泛,常在马铃薯、烟草、番茄、辣椒和茄子等作物上造成严重的危害。依据生物学、血清学和基因组等特征,PVY包含3个基本株系,分别为:PVYN、PVYO和PVYC[3-4]。另外,近年来还报道了一些由重组产生的PVY新株系,例如PVYNTN和PVYNW等[5]。PVY基因组由长约9.7 kb的正单链RNA分子组成,包含一个大的开放阅读框(open reading frame, ORF),编码一个多聚蛋白(polyprotein),而后通过蛋白酶水解成P1、HC-Pro、P3等10个成熟的蛋白质。另外,在P3蛋白N端编码区,还以+2移码的方式翻译出一个P3N-PIPO蛋白。在PVY编码的上述11个蛋白中,Moury等发现在6K2和CP蛋白编码区重组存在正向选择位点[3];Cuevas等进一步证明尽管PVY基因组中P1、P3、6K1、CI、Vpg、NIb和CP编码区受到较强的负选择压力作用,但是部分碱基位点仍具有较强的正向选择作用,而HC-Pro和NIa-Pro编码区则未发现正向选择位点[6-7];高芳銮等发现P3N-PIPO具有较强的保守性,以中性进化选择为主,但也发现了一个正向选择位点[8]。不同蛋白编码区的选择压力结果证明,PVY的进化过程受到强烈的负选择、联合中性选择和部分位点的正选择的共同作用。

PVY基因组间存在频繁的重组现象。Ogawa等发现63%(32/51)已报道的PVY全长分离物属于重组体,且重组位点多样,不同蛋白编码区重组位点发生频率不一致,P1和CP蛋白编码区重组发生频率较高,组系间、组系内皆有发生[9-10];Cuevas等的研究证明,截至2012年75%(58/77)已报道的PVY全长基因组具有不同的重组现象[7]。与已报道的3个基本株系相仿,PVY在系统发生分析上形成3个主要分支N、O和C,不同分支又分别可划分为不同的亚组[9-10]。PVY不同组、亚组与其来源和寄主相关,体现了地理(空间分布)和寄主对PVY进化的限制作用[6,11]。PVY寄主种类还可能直接决定了P3N-PIPO的长度[7]。PVY具有比较明显的种群分化,N组系中,PVY欧洲、北美和日本种群具有明显的遗传差距,部分亚种群的PVY具有典型的种群扩张特征[10]。

1.2 芜菁花叶病毒Turnipmosaicvirus(TuMV)

TuMV广泛分布在世界各地区的萝卜、白菜、芜菁等十字花科作物上,是除黄瓜花叶病毒Cucumbermosaicvirus(CMV)外,给世界各国蔬菜生产带来严重损失的主要病毒[12-13]。TuMV寄主范围广泛,能够侵染十字花科中大部分园艺作物。在东亚地区,TuMV严重危害芸薹属作物的生产[14]。TuMV通过蚜虫以非持久方式传播[14]。根据TuMV侵染芸薹属Brassica和萝卜属Raphanus植物后表现症状的不同,TuMV可分为三种寄主类型:即只能侵染芸薹属植物并产生症状的B型[15];能够同时侵染芸薹属植物和萝卜属植物,并都能引起症状的BR型;同时侵染芸薹属植物和萝卜属植物,只能在芸薹属植物上引起症状的B(R)型[16]。在中国、日本、越南等东亚、东南亚国家萝卜上发生的TuMV绝大部分属于BR型;在中国、澳大利亚和新西兰芸薹属植物上发生的TuMV大部分属于B型,而日本芸薹属植物上发生的TuMV主要为BR型[16-18]。

TuMV基因组中存在频繁的重组现象,组系间或者组系内的重组具有多种模型,不同地区的重组模型有差异,重组位点多发生在P1、P3和HC-Pro等蛋白编码区[15-23]。2013年,Nguyen等对155个TuMV基因组序列进行重组分析,结果发现多达118个TuMV分离物有重组现象[18-19]。另外,不同的重组模式还与病毒流行过程或者病毒的新发生相关。例如,在TuMV越南分离物中,大部分的重组位点在TuMV中国或者日本分离物中并未发现,这说明TuMV在越南经历了一个独特的进化过程,可能是由于“建立者效应”(founder effect)而导致的结果[18];在TuMV澳大利亚和新西兰分离物中,发现21个重组位点与之前报道的不同,亦具有典型的地域特征[17]。

依据基因组全序列或者不同蛋白编码区序列,对TuMV系统发育分析表明,欧亚大陆范围内不同TuMV分离物,结合其地理位置、寄主反应类型的不同,可划分为basal-B、Asia-BR、basal-BR和world B 4个分组[14, 23]。在种群流行时间的角度上,world B是当前流行于世界大部分地区的TuMV主流株系,而basal-B则为TuMV的古老株系;Asia-BR和basal-BR两个分组在一些地区时有发生,但并不占据主流地位[16-17,19]。2013年,Nguyen等在德国兰花中发现了TuMV的祖先类型株系,该种类型在整个基因组上与TuMV当前分离株亲缘关系最近;其他诸如基因组长度、各蛋白编码区长度,尤其是P1和CP区、蛋白酶切位点等方面,这些株系都表现出与TuMV最近的、最相似的特征,因此,这几个病毒分离物被认为是TuMV的祖先株系,并命名为TuMV-OM分组(即Orchis group)[19]。

利用贝叶斯法对TuMV的基因进行分析,结果发现TuMV的三个主要蛋白编码区核苷酸的替代率分别为:HC-Pro 1.11×10-3、P3 1.11×10-3和NIb 0.78×10-3核苷酸替代/位点/年(subs/site/year)[17,19]。进化时间分析结果表明,TuMV-OM和TuMV-BIs(brassica-infecting TuMVs)组间约在1 005年前分化,而在TuMV BIs中,约850年前开始形成目前的4个分组[19]。

1.3 西葫芦黄花叶病毒Zucchiniyellowmosaicvirus(ZYMV)

ZYMV是葫芦科作物上的一类重要的病毒病原,目前已经在世界上50多个国家发生[24]。ZYMV能够引起叶片黄化、变形,植株矮化,果实褪色变形,严重降低作物产量[25]。ZYMV通过蚜虫以非持久方式传播,目前已鉴定出10种蚜虫可在自然条件下传播ZYMV,另有部分种类蚜虫可在实验室条件下传播[26]。

ZYMV CP蛋白编码区的核苷酸替代率为5.0×10-4核苷酸替代/位点/年[27]。Simmons等发现人类活动对ZYMV的分布具有重要影响,不同国家间ZYMV种群进化受建立者效应的影响较大[27]。在单一寄主中,ZYMV CP基因多样性程度与一些动物RNA病毒相仿,为0.02%左右,CP基因中产生的突变也具有短暂、有害及快速被净化的特点。蚜传ZYMV病毒种群中还发现了一个证明存在缺失基因组短期互补作用的亚组系[28]。蚜传和机械传播对ZYMV种群突变的影响类似,但蚜传对某些位点的突变有选择性优势[29]。瓶颈作用影响ZYMV在单个西葫芦植株中的系统传播过程[30]。

1.4 大豆花叶病毒Soybeanmosaicvirus(SMV)

SMV在世界各大豆栽培产区普遍发生,常引起花叶、坏死等症状,显著降低大豆产量和品质[31]。依据不同品种大豆对SMV致病反应的差异,SMV可分为多种株系。在美国,98个SMV分离物通过8个品种的大豆致病反应分为7个株系(G1~G7)[32];依据该系统,在韩国又发现了G5H、G6H和G7H株系[33-35];而在中国和日本,则分别采取了不同的株系分类系统,例如中国把SMV划分为21个株系[36-37],而日本则划分为A~E共5个株系[38]。然而,Seo等发现,SMV东北亚(韩国)种群和北美种群并不存在明显的遗传差异[39]。此外,Seo等还发现流行于韩国的SMV高侵染性株系多是重组体,重组对SMV跨越抗SMV大豆的屏障起到决定作用,并且发现SMV CI基因可能作为一个致病性决定因子,与大豆植株中抗SMV的Rsv3基因存在互作关系[39]。与之相似,Zhou等也发现SMV中存在普遍的重组现象[40],证明SMV中国种群与韩国和美国种群间存在比较明显的遗传差异,SMV的部分基因处在比较强的正向选择压力中,例如P1、HC-Pro和P3[40]。

1.5 甘蔗花叶病毒Sugarcanemosaicvirus(SCMV)

SCMV是Potyvirus中重要的植物病原,在世界范围内广泛侵染玉米、甘蔗、高粱等禾本科作物和杂草,常造成严重的经济损失[41-42]。Li等和Xie等发现,SCMV分离物存在两个分组,组间具有较为清晰的寄主和地理特异性,不同来源的SCMV种群存在一定的基因交流现象;重组在SCMV基因组中发生的频率较高[43-44]。SCMV处于较强的负选择压力作用下,近CP基因部分位点表现出较强的多样性选择作用[43]。

1.6 甘薯羽状斑驳病毒Sweetpotatofeatherymottlevirus(SPFMV)

SPFMV是甘薯上最重要的病毒病原之一[45]。其在世界范围内分布广泛,常造成储藏期甘薯产生黄褐色龟裂和表皮变色[45]。目前,已报道的SPFMV包含4个株系,分别为RC(russet crack)、O(ordinary)、C(common)和EA(East Africa)[45-46]。RC、O和C株系分布广泛,而EA株系主要分布在东非的部分地区[47]。SPFMV不同株系间存在一定程度的重组现象[47-48],Tugume等发现6K2-Vpg-NIaPro区是SPFMV-EA株系基因组上的一个重组热点区域(recombination hotspot)[47]。在东非,SPFMV野生寄主种群与甘薯种群间存在较为明晰的跨寄主间传播;相较于C株系,EA株系在东非具有很高的遗传多样性,可能起源于该地区[47]。

1.7 李痘病毒Plumpoxvirus(PPV)

PPV是李属作物上的重要病原,由蚜虫传播,在世界范围内广泛分布,常给李子等核果类果树造成毁灭性灾害[49]。PPV具有多种不同株系,目前分布较为广泛的主要包括PPV-D、M和Rec3种[50],不同株系间存在频率较高的重组现象[51-52]。Jridi等在实验室无介体昆虫条件下,分析了PPV-M单一侵染桃树15年后PPV种群结构的变化,结果发现,PPV可在单一寄主中建立寄主内多样性种群[53]。而在田间条件下,Predajňa等发现共侵染PPV-D、M和Rec3种株系,7年后,PPV-D和Rec两种株系消失,而PPV-M株系产生大量的单体型变体,但并没有产生明显的遗传差异[52]。依据CP基因,Gibbs等发现PPV-M株系的进化率约1.4×10-4核苷酸替代/位点/年[54],与PVY、TuMV等其他马铃薯Y病毒属成员相似。

1.8 玉米矮花叶病毒Maizedwarfmosaicvirus(MDMV)

MDMV世界性分布,是玉米上的一类重要的病毒病原。2012年,Achon等依据P1-HC-Pro基因,对西班牙MDMV种群分析发现,MDMV P1和HC-Pro基因处在很强的纯化选择作用下,存在很高的遗传多样性,且P1的多样性程度高于HC-Pro基因;系统发生分析发现,MDMV具有5个分组,组内存在明显的重组现象,是MDMV种群多样性的重要驱动力;相对于进化时间和寄主因素,MDMV不同种群受到空间分布的影响较重[55]。

1.9 西瓜花叶病毒Watermelonmosaicvirus(WMV)

WMV是瓜类作物上一类重要的病毒病原之一。该病毒主要由蚜虫传播,常引起葫芦科作物表现花叶症状[56]。Moreno等发现,相对于CI和CP基因,WMV P1基因具有更高程度的遗传多样性;在CI-CP基因区段发现有重组现象,而在P1、CI和CP基因中并未发现重组位点,表明单一重组基因受到强烈的负选择作用影响;WMV种群进化受到突变、重组和负选择作用的驱动[57]。

1.10 哈登伯属花叶病毒Hardenbergiamosaicvirus(HarMV)

HarMV是近年在澳大利亚西南部植物区流行的本土哈登伯豆Hardenbergiacomptoniana上发现的一种新的马铃薯Y病毒属病毒[58-59]。Kehoe等于2014年首次发现在澳大利亚西南部地区HarMV从本土哈登伯豆传播到入侵生物羽扇豆属植物Lupinusspp.中,且HarMV基因组中存在重组现象[60]。

1.11 烟草脉带花叶病毒Tobaccoveinbandingmosaicvirus(TVBMV)

TVBMV曾给北美和我国台湾地区烟草生产带来严重威胁,近年来在中国大陆多个省份烟草栽培区都有流行发生[61-62]。Zhang等通过对TVBMV的HC-Pro、P3、6K1和CP共4个基因的遗传分析发现,TVBMV中国分离物可形成MC和YN两个分组,组间不存在明显的基因交流;重组在TVBMV基因组中发生普遍;TVBMV受到较强的负选择压力作用,其中HC-Pro基因在这4个基因中受到的选择压力最大[63]。

1.12 薯芋花叶病毒Yammosaicvirus(YMV)

YMV是薯蓣Dioscoreasp.上一类危害严重的病毒病原,目前已在世界各地薯蓣产区广泛流行发生[64]。依据NIb-CP-3UTR基因组区,Bousalem等发现YMV具有极高的遗传多样性,共包含9个分组,且组间具有一定的地理相关性;YMV基因组中具有多种重组位点,重组对YMV进化具有重要的影响[65]。

1.13 番木瓜环斑病毒Papayaringspotvirus(PRSV)

PRSV是番木瓜和葫芦科作物上的一类重要的病毒病原,是限制世界各地区番木瓜产量的主要因素之一[66]。PRSV主要包含两种生物型:PRSV-P和PRSV-W。PRSV-P首次发现于美国夏威夷地区,能够自然侵染番木瓜,可给番木瓜生产带来毁灭性危害,在世界各地广泛流行[66];PRSV-W能够自然侵染葫芦科作物,但其流行分布报道得较少[12]。Bateson等证明PRSV-P可能是由PRSV-W型部分碱基突变产生[67]。PRSV的CP基因具有较高的遗传多样性,但不同地区遗传多样性程度不同,其中多样性程度最高的是印度次大陆,说明PRSV很可能起源于东南亚地区并经历了长期的进化过程[68]。

1.14 东亚西番莲病毒EastAsianPassifloravirus(EAPV)

EAPV是西番莲果实上重要的病毒病原之一,能够引起西番莲木质病(woodiness disease),最初仅在日本和我国台湾地区有过报道,目前已经扩展到马来西亚和乌干达等地[69-71]。依据生物学和遗传性状,EAPV具有AO和IB两种株系[69]。Fukumoto等发现在日本鹿儿岛地区的EAPV仅存在AO株系,且具有很高的遗传相似性;而在日本Sumiyo,EAPV表现为一个新出现病毒种群特征[72]。

1.15 菜豆普通花叶病毒Beancommonmosaicvirus(BCMV)

BCMV广泛侵染多种豆科植物,常在菜豆Phaseolusvulgaris上引起严重危害,但在大豆上零星发生[73]。BCMV包括多种株系类型,例如NL1、NL4、NL6、NL7、PR1、RU1和US1-US10等[74]。Zhou等发现BCMV具有较高的寄主特异性,大豆分离物和花生分离物分别聚成独立的分支;P1、P3、6K2和CP基因的N端具有较高的遗传多样性,且P1和P3中的部分碱基处于正选择压力作用下;重组在BCMV基因组中发生的频率较高,是BCMV进化过程中的重要作用力[75]。

1.16 辣椒脉斑驳病毒Chilliveinalmottlevirus(ChiVMV)

ChiVMV主要危害辣椒,能够侵染茄科的多种作物,目前在东亚地区广泛流行发生[76-78]。依据血清学、遗传性状和致病型等特征,ChiVMV表现出较高的多样性[79-80],其不同种群受到空间分布的影响显著[80]。ChiVMV的CP基因受到较强的纯化选择压力,并伴有重组现象发生[80]。

2 甘薯病毒属Ipomovirus

2.1 甘薯轻型斑驳病毒Sweetpotatomildmottlevirus(SPMMV)

SPMMV寄主范围广泛,自然条件下可侵染十几个科的植物,是甘薯上重要的病毒病原之一[81-83]。SPMMV具有较高的遗传多样性,来自乌干达野生寄主的SPMMV在聚类分析中形成单独的分支,与甘薯分离物具有明显的遗传差异[81, 84]。其P1基因的N端部分碱基处于较强的正向选择压力下,而HC-Pro、P3、6K1和CP等基因受到负选择压力影响显著。SPMMV基因组中重组发生的频率较高,特别是位于基因组两端的区域重组位点较多[81]。

2.2 西葫芦黄脉病毒Squashveinyellowingvirus(SqVYV)

SqVYV可以侵染葫芦科的多种植物,侵染西瓜引起西瓜藤衰退,是严重危害西瓜生产的病害之一[85-87]。不同于potyviruses,Webster等发现佛罗里达地区的SqVYV种群具有较高的遗传相似性,其分离物仅可形成两个分组,且组间遗传差异较小[88]。SqVYV佛罗里达种群受到负选择压力的作用明显,尚未发现有正向选择位点,且其重组发生频率较低,受到建立者效应的影响显著[88]。

2.3 木薯褐条病毒Cassavabrownstreakvirus(CBSV)

木薯褐条病是东非地区木薯上的主要病毒病害类型之一[89],是由CBSV和近年来新发生的另外一种病毒——乌干达木薯褐条病毒Ugandancassavabrownstreakvirus(UCBSV)引起的[90-91]。CBSV和UCBSV遗传关系较近,核酸和氨基酸相似性分别在70%和74%左右。Mbanzibwa等发现两种病毒分别存在较高频率的重组现象,但未发现两种病毒间存在重组。CBSV的CP基因和UCBSV的HAM1h基因中存在部分碱基处于正向选择压力作用下,表明CBSV和UCBSV可能处于不同的进化过程中[92]。

3 禾草病毒属Poacevirus

3.1 麦类花叶病毒Triticummosaicvirus(TriMV)

TriMV是近几年在小麦上发现的一种病毒[93-94],由小麦卷叶螨AceriatosichellaKeifer传播[95],目前已在美国大平原地区广泛发生[93-94, 96-97]。Bartels等发现TriMV在同一寄主中进化过程主要受到遗传漂变的影响,不同代际间TriMV核苷酸突变具有很强的随机性,CP基因突变频率约1.95×10-4/nt,低于小麦线条花叶病毒Wheatstreakmosaicvirus(WSMV),且具有平行进化的特点[98]。

3.2 甘蔗线条花叶病毒Sugarcanestreakmosaicvirus(SCSMV)

SCSMV首先在甘蔗花叶病株上发现,自然条件下能够侵染甘蔗、高粱和一些禾本科杂草[99-105]。Viswanathan等[106]和Bagyalakshmi等[107]发现SCSMV印度分离物在CP和HC-Pro基因上存在较高的遗传多样性。SCSMV具有一个典型的“准种”结构,普遍存在同种病毒不同分离物或株系混合侵染的现象;SCSMV在中印两国间存在两个独立遗传的种群,且种群间基因交换的频率很低[108-110]。

4 问题与展望

综上所述,目前已经报道了多种potyvirids的分子进化研究。单一potyvirids种群的分子进化过程受到突变、重组、漂变、选择压力和迁移的共同作用。突变是促进potyvirids种群分子进化的主要作用力,potyvirids具有较高频率的核苷酸替代率,平均水平在10-4级[111-114];在大部分potyvirids,特别是potyviruses基因组中,重组发生的频率都很高,同种或者近缘病毒的分子间或者分子内重组,是potyvirids增强种群适合度,增加寄主适应性的主要方式之一,亦是当前很多新型病毒产生或者老病毒某些新株系重新活跃的重要原因[115-118];漂变决定了Potyviridae进化的随机性和不可逆性,多种potyvirids种群在某些地区或者寄主中的进化受到漂变,特别是建立者效应的重要影响[16,18];选择压力对病毒进化具有定向选择的作用,potyvirids基因组受到负选择压力作用的影响显著,证明了Potyviridae进化上的保守性,而在P1、HC-Pro、P3和CP等基因中存在不同数量的正向选择位点,这显示了独特的地理环境和寄主条件对Potyviridae的定向选择作用[30,44,75,108-109,119];potyvirids一般具有较为广泛的寄主范围,多种potyvirids在主要危害作物和其他寄主间的比较进化研究表明,potyvirids在寄主间的迁移,对其进化具有重要影响[75,98]。

研究病毒的分子进化,很重要的目的是在分子水平上揭示病毒的进化历史,重演病毒在不同地区、不同寄主上的流行传播过程[115-116,120]。然而,目前大部分potyvirids的进化研究局限于单一种群,单一寄主中病毒进化影响因素的阐释。在今后的研究中,应当广泛考虑病毒-寄主-介体-环境等多方面的因素,从分子生态学和种群生态学的角度,还原病毒起源、进化和流行传播过程,从而为病毒病害的防治提供合理的预防策略。

[1] Adams M J, Lefkowitz E J, King A M Q, et al. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2015)[J]. Archives of Virology, 2015, 160: 1837-1850.

[2] Gibbs A J. Plant virus classification[J]. Advances in Virus Research, 1969, 14: 263-328.

[3] Moury B, Morel C, Johansen E, et al. Evidence for diversifying selection inPotatovirusYand in the coat protein of other potyviruses [J]. Journal of General Virology, 2002, 83: 2563-2573.

[4] Singh R P, Valkonen J P T, Gray S M, et al. Discussion paper: The naming ofPotatovirusYstrains infecting potato [J]. Archives of Virology, 2008, 153: 1-13.

[5] Glais L, Tribodet M, Kerlan C.Genomic variability inPotatopotyvirusY(PVY): evidence that PVYNWand PVYNTNvariants are single to multiple recombinants between PVYOand PVYNisolates[J]. Archives of Virology, 2002, 147: 363-378.

[6] Cuevas J M, Delaunay A, Rupar M, et al. Molecular evolution and phylogeography ofPotatovirusYbased on the CP gene[J]. Journal of General Virology, 2012, 93: 2496-2501.

[7] Cuevas J M, Delaunay A, Visser J C, et al. Phylogeography and molecular evolution ofPotatovirusY[J]. PLoS ONE, 2012, 7: e37853.

[8] 高芳銮, 沈建国, 史凤阳, 等. 马铃薯Y病毒pipo基因的分子变异及结构特征分析[J]. 遗传, 2013, 35(9): 1125-1134.

[9] Ogawa T, Nakagawa A, Hataya T, et al. The genetic structure of populations ofPotatovirusYin Japan; based on the analysis of 20 full genomic sequences [J]. Journal of Phytopathology, 2012, 160: 661-673.

[10]Ogawa T, Tomitaka Y, Nakagawa A, et al. Genetic structure of a population ofPotatovirusYinducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations [J]. Virus Research, 2008, 131: 199-212.

[11]韩树鑫, 张俊华, 白艳菊, 等. 黑龙江马铃薯Y病毒P1基因的特点[J]. 微生物学报, 2016,56(7):1079-1088.

[12]Tomlinson J A.Epidemiology and control of virus diseases of vegetables [J]. Annals of Applied Biology, 1987,110: 661-681.

[13]Walsh J A, Jenner C E.Turnipmosaicvirusand the quest for durable resistance[J]. Molecular Plant Pathology, 2002, 3(5): 289-300.

[14]Tomimura K, Gibbs A J, Jenner C E, et al. The phylogeny ofTurnipmosaicvirus: comparisons of 38 genomic sequences reveal a Eurasian origin and a recent‘emergence’ in east Asia[J]. Molecular Ecology, 2003, 12(8): 2099-2111.

[15]Tan Zhongyang, Wada Y, Chen Jishuang, et al. Inter-and intralineage recombinants are common in natural populations ofTurnipmosaicvirus[J]. Journal of General Virology, 2004, 85: 2683-2696.

[16]Tomitaka Y, Ohshima K. A phylogeographical study of theTurnipmosaicviruspopulation in East Asia reveals an ‘emergent’ lineage in Japan [J]. Molecular Ecology, 2006,15: 4437-4457.

[17]Yasaka R, Ohba K, Schwinghamer M W, et al. Phylodynamic evidence of the migration of turnip mosaic potyvirus from Europe to Australia and New Zealand [J]. Journal of General Virology, 2015, 96: 701-713.

[18]Nguyen H D, Tran H T N, Ohshima K. Genetic variation of theTurnipmosaicviruspopulation of Vietnam: a case study of founder, regional and local influences[J]. Virus Research, 2013, 171: 138-149.

[19]Nguyen H D, Tomitaka Y, Ho S Y W, et al.Turnipmosaicpotyvirusprobably first spread to Eurasian brassica crops from wild orchids about 1000 years ago [J]. PLoS ONE, 2013, 8: e55336.

[20]Ohshima K, Akaishi S, Kajiyama H, et al. Evolutionary trajectory ofTurnipmosaicviruspopulations adapting to a new host [J]. Journal of General Virology, 2010, 91: 788-801.

[21]Ohshima K, Tomitaka Y, Wood J T, et al. Patterns of recombination inTurnipmosaicvirusgenomic sequences indicate hotspots of recombination[J]. Journal of General Virology, 2007,88: 298-315.

[22]Tan Zhongyang, Gibbs A J, Tomitaka Y, et al. Mutations inTurnipmosaicvirusgenomes that have adapted toRaphanussativus[J].Journal of General Virology, 2005, 86: 501-510.

[23]Ohshima K, Yamaguchi Y, Hirota R, et al. Molecular evolution ofTurnipmosaicvirus: evidence of host adaptation, genetic recombination and geographical spread[J]. Journal of General Virology, 2002, 83: 1511-1521.

[24]Desbiez C, Lecoq H.Zucchiniyellowmosaicvirus[J]. Plant Pathology, 1997,46: 809-829.

[25]Gal-On A.Zucchiniyellowmosaicvirus: insect transmission and pathogenicity-the tails of two proteins [J]. Molecular Plant Pathology, 2007,8(2): 139-150.

[26]Katis N I, Tsitsipis J A, Lykouressis D P, et al. Transmission ofZucchiniyellowmosaicvirusby colonizing and non-colonizing aphids in Greece and new aphid species vectors of the virus[J]. Journal of Phytopathology, 2006,154: 293-302.

[27]Simmons H E, Holmes E C, Stephenson A G. Rapid evolutionary dynamics ofZucchiniyellowmosaicvirus[J]. Journal of General Virology, 2008, 89: 1081-1085.

[28]Simmons H E, Holmes E C, Stephenson A G. Rapid turnover of intra-host genetic diversity inZucchiniyellowmosaicvirus[J]. Virus Research, 2011, 155: 389-396.

[29]Simmons H E, Dunham J P, Stack J C, et al. Deep sequencing reveals persistence of intra- and inter-host genetic diversity in natural and greenhouse populations ofZucchiniyellowmosaicvirus[J]. Journal of General Virology,2012,93:1831-1840.

[30]Dunham J P, Simmons H E, Holmes E C, et al. Analysis of viral (Zucchiniyellowmosaicvirus) genetic diversity during systemic movement through aCucurbitapepovine[J]. Virus Research, 2014, 191: 172-179.

[31]Hill J H, Koval N C, Gaska J M, et al. Identification of field tolerance to bean pod mottle and soybean mosaic viruses in soybean [J]. Crop Science, 2007,47: 212-218.

[32]Cho E K, Goodman R M. Strains ofSoybeanmosaicvirus: classification based on virulence in resistant soybean cultivars[J]. Phytopathology, 1979, 69: 467-470.

[33]Seo J K, Lee H G, Kim K H. Systemic gene delivery into soybean by simple rub-inoculation with plasmid DNA of aSoybeanmosaicvirus-based vector [J]. Archives of Virology, 2009, 154: 87-99.

[34]Kim Y H, Kim O S, Lee B C, et al. G7H, a newSoybeanmosaicvirusstrain: its virulence and nucleotide sequence of CI gene [J]. Plant Disease, 2003, 87: 1372-1375.

[35]Seo J K, Lee H G, Choi H S, et al. Infectious in vivo transcripts from a full-length clone ofSoybeanmosaicvirusstrain G5H [J]. Plant Pathology Journal, 2009, 25(1): 54-61.

[36]Li K, Yang Q H, Zhi H J, et al. Identification and distribution ofSoybeanmosaicvirusstrains in Southern China[J]. Plant Disease, 2010, 94: 351-357.

[37]王修强, 盖钧镒, 濮祖芹. 黄淮和长江中下游地区大豆花叶病毒株系鉴定与分布[J]. 大豆科学, 2003, 22(2): 102-107.

[38]Takahashi K, Tanaka T, Iida W, et al. Studies on virus diseases and causal viruses of soybean in Japan [J]. Bulletin of the Tohoku National Agricultural Experiment Station, 1980(62): 1-130.

[39]Seo J K, Ohshima K, Lee H G, et al. Molecular variability and genetic structure of the population ofSoybeanmosaicvirusbased on the analysis of complete genome sequences [J]. Virology, 2009, 393(1): 91-103.

[40]Zhou Guangcan, Shao Zhuqing, Ma Fangfang, et al. The evolution of soybean mosaic virus: an updated analysis by obtaining 18 new genomic sequences of Chinese strains/isolates [J]. Virus Research, 2015, 208: 189-198.

[41]Achon M A, Serrano L, Alonso-Dueas N, et al. Complete genome sequences of Maize dwarf mosaic and Sugarcane mosaic virus isolates coinfecting maize in Spain [J]. Archives of Virology, 2007,152: 2073-2078.

[42]Alegria O M, Royer M, Bousalem M, et al. Genetic diversity in the coat protein coding region of eighty-sixSugarcanemosaicvirusisolates from eight countries, particularly from Cameroon and Congo [J]. Archives of Virology, 2003, 148: 357-372.

[43]Li Yongqiang, Liu Ruiying, Zhou Tao, et al.Genetic diversity and population structure ofSugarcanemosaicvirus[J]. Virus Research, 2013, 171: 242-246.

[44]Xie Xiansheng, Chen Wei, Fu Qiang, et al. Molecular variability and distribution ofSugarcanemosaicvirusin Shanxi, China [J]. PLoS ONE, 2016,11(3): e0151549.

[45]Untiveros M, Fuentes S, Kreuze J. Molecular variability ofSweetpotatofeatherymottlevirusand other potyviruses infecting sweet potato in Peru [J]. Archives of Virology, 2008, 153: 473-483.

[46]Kreuze J F, Karyeija R F, Gibson R W, et al.Comparisons of coat protein gene sequences show that East African isolates ofSweetpotatofeatherymottlevirusform a genetically distinct group [J]. Archives of Virology, 2000, 145: 567-574.

[47]Tugume A K, Cuéllar W J, Mukasa S B, et al.Molecular genetic analysis of virus isolates from wild and cultivated plants demonstrates that East Africa is a hotspot for the evolution and diversification ofSweetpotatofeatherymottlevirus[J]. Molecular Ecology, 2010, 19: 3139-3156.

[48]Yamasaki S, Sakai J, Fuji S, et al. Comparisons among isolates ofSweetpotatofeatherymottlevirususing complete genomic RNA sequences [J]. Archives of Virology, 2010, 155: 795-800.

[49]Garcia J, Cambra M.Plumpoxvirusand sharka disease [J]. Plant Viruses, 2007,1: 69-79.

[50]Candresse T, Cambra M. Causal agent of sharka disease: historical perspective and current status ofPlumpoxvirusstrains[J]. EPPO Bulletin, 2006,36(2): 239-246.

[52]Predajňa L,ubr Z, Candresse T, et al. Evaluation of the genetic diversity ofPlumpoxvirusin a single plum tree [J]. Virus Research, 2012, 167(1): 112-117.

[53]Jridi C, Martin J F, Marie-Jeanne V, et al. Distinct viral populations differentiate and evolve independently in a single perennial host plant [J]. Journal of Virology, 2006,80(5): 2349-2357.

[54]Gibbs A J, Ohshima K, Phillips M J, et al. The prehistory of potyviruses: their initial radiation was during the dawn of agriculture [J]. PLoS ONE, 2008, 3(6): e2523.

[55]Achon M A, Larraaga A, Alonso-Dueas N. The population genetics ofMaizedwarfmosaicvirusin Spain [J]. Archives of Virology, 2012, 157(12): 2377-2382.

[56]Grafton-Cardwell E E, Perring T M, Smith R F, et al. Occurrence of mosaic viruses in melons in the central valley of California [J]. Plant Disease, 1996,80(10): 1092-1097.

[57]Moreno I M, Malpica J M, Díaz-Pendón J A, et al. Variability and genetic structure of the population ofWatermelonmosaicvirusinfecting melon in Spain[J]. Virology, 2004, 318(1): 451-460.

[58]Coutts B A, Kehoe M A, Webster C G, et al. Indigenous and introduced potyviruses of legumes andPassifloraspp. from Australia: biological properties and comparison of coat protein nucleotide sequences[J]. Archives of Virology, 2011, 156(10): 1757-1774.

[59]Webster C G, Coutts B A, Jones R A C, et al. Virus impact at the interface of an ancient ecosystem and a recent agroecosystem: studies on three legume-infecting potyviruses in the southwest Australian floristic region [J]. Plant Pathology, 2007,56(5): 729-742.

[60]Kehoe M A, Coutts B A, Buirchell B J, et al.Hardenbergiamosaicvirus: Crossing the barrier between native and introduced plant species [J]. Virus Research, 2014, 184: 87-92.

[61]Tian Y P, Liu J L, Yu X Q, et al. Molecular diversity ofTobaccoveinbandingmosaicvirus[J]. Archives of Virology, 2007,152(10): 1911-1915.

[62]Wang H Y, Zhu T S, Cui T T, et al. Complete genome sequence of a tobacco isolate of theTobaccoveinbandingmosaicvirusstrain prevailing in China[J]. Archives of Virology, 2010, 155(2): 293-295.

[63]Zhang Chengling, Gao Rui, Wang Jie, et al. Molecular variability ofTobaccoveinbandingmosaicviruspopulations[J]. Virus Research, 2011, 158: 188-198.

[64]Thouvenel J C, Fauquet C.Yam mosaic, a new potyvirus infectingDioscoreacayenensisin the Ivory Coast [J]. Annals of Applied Biology, 1979, 93(3): 279-283.

[65]Bousalem M, Douzery E J P, Fargette D. High genetic diversity, distant phylogenetic relationships and intraspecies recombination events among natural populations ofYammosaicvirus: a contribution to understanding potyvirus evolution [J]. Journal of General Virology, 2000, 81: 243-255.

[66]Purcifull D E, Edwardson J R, Hiebert E, et al.Papayaringspotvirus[J]. CMI/AAB Descriptions of Plant Viruses, 1984, 292(84): 8.

[67]Bateson M F, Henderson J, Chaleeprom W, et al.Papayaringspotpotyvirus: isolate variability and the origin of PRSV type P (Australia)[J]. Journal of General Virology, 1994, 75(12): 3547-3553.

[68]Bateson M F, Lines R E, Revill P, et al. On the evolution and molecular epidemiology of the potyvirusPapayaringspotvirus[J]. Journal of General Virology, 2002, 83: 2575-2585.

[69]Iwai H, Yamashita Y, Nishi N, et al. The potyvirus associated with the dappled fruit ofPassifloraedulisin Kagoshima prefecture, Japan is the third strain of the proposed new speciesEastAsianPassifloravirus(EAPV) phylogenetically distinguished from strains ofPassionfruitwoodinessvirus[J]. Archives of Virology, 2006,151(4): 811-818.

[70]Iwai H, Terahara R, Yamashita Y, et al. Complete nucleotide sequence of the genomic RNA of an Amami-O-shima strain of East AsianPassiflorapotyvirus [J]. Archives of Virology, 2006,151: 1457-1460.

[71]Abdullah N, Ismail I, Pillai V, et al. Nucleotide sequence of the coat protein gene of theMalaysianPassifloravirusand its 3′ non-coding region[J]. American Journal of Applied Sciences, 2009, 6(9): 1633-1636.

[72]Fukumoto T, Nakamura M, Ohshima K, et al. Genetic structure and variability ofEastAsianPassifloraviruspopulation in Amami-O-shima, Japan[J]. Journal of Phytopathology, 2012, 160: 404-411.

[73]Morales F, Bos L.Beancommonmosaicvirus[J]. CMI/AAB Descriptions of Plant Viruses, 1988, 22:337.

[74]McKern N M, Ward C W, Shukla D D. Potyvirus taxonomy[M]. Springer-Verlag Wien, 1992.

[75]Zhou Guangcan, Wu Xiaoyi, Zhang Yanmei, et al. A genomic survey of thirty soybean-infectingBeancommonmosaicvirus(BCMV) isolates from China pointed BCMV as a potential threat to soybean production [J]. Virus Research, 2014, 191: 125-133.

[76]Zhao F F, Xi D H, Liu J, et al. First report ofChilliveinalmottlevirusinfecting tomato (Solanumlycopersicum) in China[J]. Plant Disease, 2014, 98(11): 1589.

[77]Ding M, Yang C, Zhang L, et al. Occurrence ofChilliveinalmottlevirusinNicotianatabacumin Yunnan, China [J]. Plant Disease, 2011, 95: 357.

[78]Moury B, Palloix A, Caranta C, et al. Serological, molecular, and pathotype diversity ofPepperveinalmottlevirusandChiliveinalmottlevirus[J]. Phytopathology, 2005, 95: 227-232.

[79]Tsai W S, Huang Y C, Zhang D Y, et al. Molecular characterization of the CP gene and 3′UTR ofChilliveinalmottlevirusfrom South and Southeast Asia [J]. Plant Pathology, 2008, 57(3): 408-416.

[80]Gao Fanluan, Jin Jing, Zou Wenchao, et al. Geographically driven adaptation ofChilliveinalmottlevirusrevealed by genetic diversity analysis of the coat protein gene [J]. Archives of Virology. 2016,161(5): 1329-1333.

[81]Tugume A K, Mukasa S B, Kalkkinen N, et al. Recombination and selection pressure in the ipomovirusSweetpotatomildmottlevirus(Potyviridae) in wild species and cultivated sweetpotato in the centre of evolution in East Africa [J]. Journal of General Virology, 2010, 91: 1092-1108.

[82]Tairo F, Kullaya A, Valkonen J P T. Incidence of viruses infecting sweetpotato in Tanzania [J]. Plant Disease, 2004, 88: 916-920.

[83]Hollings M, Stone O M, Bock K R. Purification and properties of sweet potato mild mottle, a white-fly borne virus from sweet potato (Ipomoeabatatas) in East Africa [J]. Annals of Applied Biology, 1976,82: 511-528.

[84]Tairo F, Mukasa S B, Jones R A C, et al. Unravelling the genetic diversity of the three main viruses involved in sweet potato virus disease (SPVD), and its practical implications[J]. Molecular Plant Pathology, 2005, 6: 199-211.

[85]Adkins S, Webb S E, Achor D, et al. Identification and characterization of a novel whitefly-transmitted member of the familyPotyviridaeisolated from cucurbits in Florida [J]. Phytopathology, 2007,97: 145-154.

[86]Adkins S, Webb S E, Baker C A, et al.Squashveinyellowingvirusdetection using nested polymerase chain reaction demonstrates that the cucurbit weed momordica charantia is a reservoir host [J]. Plant Disease, 2008, 92: 1119-1123.

[87]Adkins S, Webster C G, Kousik C S, et al. Ecology and management of whitefly-transmitted viruses of vegetable crops in Florida [J]. Virus Research, 2011, 159: 110-114.

[88]Webster C G, Adkins S. Low genetic diversity ofSquashveinyellowingvirusin wild and cultivated cucurbits in the U.S. suggests a recent introduction [J]. Virus Research, 2012, 163(2): 520-527.

[89]Hillocks R, Jennings D. Cassava brown streak disease: a review of present knowledge and research needs [J]. International Journal of Pest Management, 2003, 49: 225-234.

[90]Mbanzibwa D R, Tian Y P, Tugume A K, et al. Genetically distinct strains ofCassavabrownstreakvirusin the Lake Victoria basin and the Indian Ocean coastal area of East Africa [J]. Archives of Virology, 2009, 154: 353-359.

[91]Alicai T, Omongo C A, Maruthi M N, et al. Re-emergence of cassava brown streak disease in Uganda [J]. Plant Disease, 2007,91: 24-29.

[92]Mbanzibwa D R, Tian Y P, Tugume A K, et al. Evolution of cassava brown streak disease-associated viruses [J]. Journal of General Virology, 2011, 92: 974-987.

[93]Seifers D L, Martin T J, Harvey T L, et al. Identification of the wheat curl mite as the vector ofTriticummosaicvirus[J]. Plant Disease, 2009, 93: 25-29.

[94]Fellers J P, Seifers D, Ryba-White M, et al.The complete genome sequence ofTriticummosaicvirus, a new wheat-infecting virus of the High Plains [J]. Archives of Virology, 2009, 154(9): 1511-1515.

[95]McMechan A J, Tatineni S, French R, et al. Differential transmission ofTriticummosaicvirusby wheat curl mite populations collected in the Great Plains [J]. Plant Disease, 2014, 98: 806-810.

[96]Tatineni S, Qu Feng, Li Rurui, et al. Triticum mosaic poacevirus enlists P1 rather than HC-Pro to suppress RNA silencing-mediated host defense [J]. Virology, 2012, 433(1): 104-115.

[97]Tatineni S, Ziems A D, Wegulo S N, et al.Triticummosaicvirus: a distinct member of the familyPotyviridaewith an unusually long leader sequence [J]. Phytopathology, 2009, 99: 943-950.

[98]Bartels M, French R, Graybosch R A, et al.Triticummosaicvirusexhibits limited population variation yet shows evidence of parallel evolution after replicated serial passage in wheat [J]. Virology, 2016,492: 92-100.

[99]Putra L K, Astono T H, Syamsidio S R C, et al. Investigation on transmission modes and host range ofSugarcanestreakmosaicvirusin sugarcane (SaccharumofficinarumL.) in Indonesia[J]. Journal Agricultral and Crop Research, 2015, 3(4): 59-66.

[100]Fu Weilin, Sun Shengren, Fu Huaying, et al. A one-step real-time RT-PCR assay for the detection and quantitation ofSugarcanestreakmosaicvirus[J]. BioMed Research International, 2015, 2015: 569131.

[101]Prabowo D B, Hadiastono T, Himawan T, et al. Detection disease ofSugarcanestreakmosaicvirus(SCSMV) via serological test on sugarcane (SaccharumofficinarumL.), weed and insect vector[J]. International Journal of Science Research, 2014, 3(1): 88-92.

[102]Li Wenfeng, He Zhen, Li Shifang, et al. Molecular characterization of a new strain ofSugarcanestreakmosaicvirus(SCSMV)[J]. Archives of Virology, 2011, 156(11): 2101-2104.

[103]Srinivas K P, Reddy Ch V S, Ramesh B, et al. Identification of a virus naturally infecting sorghum in India asSugarcanestreakmosaicvirus[J]. European Journal of Plant Pathology, 2010, 127(1): 13-19.

[104]Xu D L, Zhou G H, Xie Y J, et al. Complete nucleotide sequence and taxonomy ofSugarcanestreakmosaicvirus, member of a novel genus in the familyPotyviridae[J]. Virus Genes, 2010, 40(3): 432-439.

[105]Hema M, Sreenivasulu P, Savithri H S. Taxonomic position ofSugarcanestreakmosaicvirusin the familyPotyviridae[J]. Archives of Virology, 2002, 147(10): 1997-2007.

[106]Viswanathan R, Balamuralikrishnan M, Karuppaiah R. Characterization and genetic diversity ofSugarcanestreakmosaicviruscausing mosaic in sugarcane[J]. Virus Genes, 2008, 36(3): 553-564.

[107]Bagyalakshmi K, Parameswari B, Chinnaraja C, et al. Genetic variability and potential recombination events in the HC-Pro gene ofSugarcanestreakmosaicvirus[J]. Archives of Virology, 2012, 157: 1371-1375.

[108]He Zhen, Li Wenfeng, Yasaka R, et al. Molecular variability ofSugarcanestreakmosaicvirusin China based on an analysis of the P1 and CP protein coding regions [J]. Archives of Virology, 2014, 159(5): 1149-1154.

[109]He Zhen, Yasaka R, Li Wenfeng, et al. Genetic structure of populations ofSugarcanestreakmosaicvirusin China: Comparison with the populations in India[J]. Virus Research, 2016,211: 103-116.

[110]Liang Shanshan, Alabi O J, Damaj M B, et al. Genomic variability and molecular evolution of Asian isolates ofSugarcanestreakmosaicvirus[J]. Archives of Virology, 2016,161(6): 1493-1503.

[111]Domingo E, Holland J J. RNA virus mutations and fitness for survival [J].Annual Review of Microbiology,1997,51:151-178.

[112]Duffy S, Shackelton L A, Holmes E C.Rates of evolutionary change in viruses: patterns and determinants [J]. Nature Reviews Genetics, 2008, 9(4): 267-276.

[113]Elena S F, Agudelo-Romero P, Carrasco P, et al. Experimental evolution of plant RNA viruses [J]. Heredity, 2008, 100(5): 478-483.

[114]Lauring A S, Frydman J, Andino R. The role of mutational robustness in RNA virus evolution [J]. Nature Reviews Microbiology, 2013, 11(5): 327-336.

[115]Holmes E C.The evolutionary genetics of emerging viruses[J]. Annual Review of Ecology Evolution and Systematics, 2009, 40: 353-372.

[116]Holmes E C.What can we predict about viral evolution and emergence?[J]. Current Opinion in Virology, 2013, 3(2): 180-184.

[117]Martin S, Sambade A, Rubio L, et al. Contribution of recombination and selection to molecular evolution ofCitrustristezavirus[J]. Journal of General Virology, 2009, 90: 1527-1538.

[118]Worobey M, Holmes E C.Evolutionary aspects of recombination in RNA viruses [J]. Journal of General Virology, 1999, 80: 2535-2543.

[119]Nguyen H D, Tran H T N, Ohshima K. Genetic variation of theTurnipmosaicviruspopulation of Vietnam: a case study of founder, regional and local influences [J]. Virus Research, 2013, 171(1): 138-149.

[120]Moya A, Elena S F, Bracho A, et al. The evolution of RNA viruses: a population genetics view [J]. Proceedings of the National Academy of Sciences USA, 2000, 97(13): 6967-6973.

(责任编辑:杨明丽)

Advances in molecular evolution of viruses in the familyPotyviridae

He Zhen1,2, Chen Chunfeng1, Zhang Zhixiang2, Li Shifang2

(1. School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of PlantProtection, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

Potyviridaeis one of important groups of plant viruses, and some species are significant pathogens in crop production. In the present review, we summarized the molecular evolution of more than 20 virus species in the generaPotyvirus,Ipomovirus, andPoacevirusof the familyPotyviridae, discussed some factors influencing mutation, recombination, genetic drift, selection and migration of potyvirids, and proposed future research directions, in order to provide effective strategies for prevention and control of the potyvirids.

Potyviridae; molecular evolution

2016-06-07

2016-07-15

国家自然科学基金(31601604);公益性行业(农业)科研专项(201303028);江苏省高校自然科学基金(16KJB210015)

S 435.32

A

10.3969/j.issn.0529-1542.2017.03.003

* 通信作者 E-mail:sfli@ippcaas.cn

猜你喜欢
花叶病毒株系侵染
中椒1615 号
侵染萝卜的油菜花叶病毒广东分离物分子特征及其致病性分析
过表达NtMYB4a基因增强烟草抗旱能力
揭示水霉菌繁殖和侵染过程
花生黄曲霉侵染力
转BpGLK1基因白桦叶色变异规律及生长特性分析
ToCV单独侵染和TYLCV&ToCV复合侵染番茄植株上烟粉虱寄主适应性及寄主植物营养成分含量和防御反应变化
转录因子OsNAC2对逆境下水稻产量性状的影响
大白菜苗期根肿病抗性快速鉴定方法
转基因金叶银中杨叶色及生长变异分析