优化初中数学课堂教学设计

2017-05-13 00:59张军萍
中学生数理化·教与学 2017年5期
关键词:数轴题型思维能力

张军萍

数学课程标准明确指出,义务教育阶段的数学课程的基本出发点是促进学生全面、持续、和谐地发展.创新是教学改革的不懈追求,初中数学课堂教学要培养学生的创新思维能力,需要从多个角度优化教学设计.

一、引导学生观察,激活学生的创新思维

在数学课堂教学中,教师要注意引导学生对数学现象、数学构成、解析过程展开细致观察,从观察中启动学习的思维.首先,在学生观察前,教师要给学生以明确的观察目标、观察任务和观察要求,使学生观察有具体方向,其观察自然呈现高效性.其次,学生观察时,教师要及时跟进,针对学生观察实际给出必要的引导,指导学生观察方法,提醒学生观察分析,引导学生运用直观教具和现代教学技术,深入研究观察信息.最后,培养学生的观察兴趣.观察是一种学习方法,更是一种学习态度,教师要从培养学生观察主动性开始,引导学生养成良好的观察习惯.数学与学生生活密切相连,发动学生从平时身边数学现象展开观察,其培养价值会更高.例如,在讲“生活中的立体图形”时,教师可以让学生观察身边的实物,抽象出点、线、面等图形,还要对点、线、面之间的关系展开深入分析.学生开始观察,很快就获得丰富的观察信息.有学生认为,课本、课桌、黑板、地板等,都是具体的图形,而且是由点、线、面构成的.这些矩形的边是抽象的线,线的交接处是点,点、线内构,则是面.这些点、线、面构成一个完整图形,而且是不可或缺的要素.教师继续引导:生活中还有曲面、曲线构成的图形,在什么地方可以看到这些图形?学生很快就想到眼镜面就是曲面.还有学生提到球面等.教师让学生找寻生活中的点、线、面,学生对此非常熟悉,参与热情很高,并在观察中形成点、线、面的概念.这是抽象概念具形化的表现,自然属于学习思维的创新行动.教师继续拓展学习视野,让学生找曲面、曲线,丰富学生的视角,使学生对点、线、面的认知更加深刻和具体.

二、发动学生质疑,矫正学生的思维方向

数学具有抽象性,教师发动学生针对学习内容展开质疑活动,学生不仅要深入解析文本教材,还要整合学习思维,给出质疑问题的具体方式.如果教师给出积极的鼓励,就能提高学生参与质疑的主动性,其思维运行会更有效,创新思维成长是必然结果.例如,在讲“数轴”时,教师可以在学生自主阅读学习基础上给出一些思考问题:小学就学习过射线,你可以在射线上表示1和2吗?在射线上能不能表示有理数?为什么?如何改动射线才能表示有理数呢?学生展开讨论学习,很快就完成了认知衔接,自然引出数轴.教师让学生继续讨论,观察数轴,并给出自己的疑问,提交班级展开评价.学生继续探索,疑难问题不断涌现:确定了原点和正方向的直线就一定叫数轴吗?数轴有一个原点,向右为正方向,向左为负方向,是不是所有有理数都可以在这条数轴上表示出来呢?在数轴上,已知点P表示-4,如果数轴原点移动到其他位置了,那么P点对应的还是-4吗?如果改变了长度单位呢?或者改变了直线的正方向呢?P对应的还是-4吗?教师对学生质疑问题展开多重解读,并对学生质疑质量进行评价,肯定学生的思考价值.从学生质疑情况可以看出,学生对数轴展开了深度探究,这个操作过程本身就是一种思维历练.

三、拓展训练,培养学生的创新思维能力

在设计数学课堂训练时,教师要有创新意识,优化数学训练内容、题型等,培养学生的想象力和创造力.关注学生多项思维开发,应该成为课堂训练的重要意识.教师还要有分层教育思想.在设计具体训练时,教师要关注不同群体学生的个性需求,用梯度性训练,培养学生的创新思维能力.例如,在讲“绝对值”时,教师可以给出多种训练题型,并规定完成其中三道题即可:(1)填空:+4的符号是,绝对值是,-25的符号是,绝对值是.(2)列举题:绝对值是0的数有几个?各是什么?绝对值是58的数有几个?各是什么?(3)计算题:│-16│-│-7│;│-3│×│-2│.(4)问答题:如果将绝对值的代数定义用数学符号语言来表示,该如何表达呢?学生积极投入训练中,教师巡视,并解决学生出现的个别问题.在成果展示时,学生训练完成效果较好.教师组织学生对展开集体评价活动,训练获得圆满成功.教师给出多种训练题型,目的是培养学生的思维能力.

总之,创新思维是数学课堂教学的重要目标.培养学生的创新思維习惯,关系学生数学综合素质的提高,需要教师有足够的耐心和正确的引导策略.“要养成一种习惯,必须经过反复的历练”.在教学过程中,教师要不断提醒学生,并给出具体的引导,促使学生积极行动起来,并在实践训练中实现创新思维的成长.

猜你喜欢
数轴题型思维能力
离散型随机变量常考题型及解法
巧妙构造函数 破解三类题型
培养思维能力
培养思维能力
数轴的作用
一次函数中的常见题型
巧用数轴定解集
“咬住”解集,“握紧”数轴,“破解”参数