赵晨浩
【摘要】 数学建模是通过数学语言构建约束条件,求解实际问题的过程。数学建模更侧重解决实际问题,模型的设定具有主观性,且涉及的学科领域十分宽泛。正因为这些特点,计算机在数学建模的领域的运用有其必要性,计算机模拟是数学建模中最为重要的运用。具体运用工具包括数学软件、图像处理软件、统计软件和编程软件。
【关键词】 计算机 数学建模 应用
前言
数学的研究是对模式的研究,而数学建模即是通过数学方法对现实规律进行抽象概括从而求解的过程。在自然科学领域,数学建模利用逻辑严密、体系完整的数学语言求解出了更为精确的方案。
而近年来,交叉学科的发展使得数学建模技术逐渐运用到了金融、经济、环境等多个领域,重要性日益凸显。而计算机本身强大的计算能力使得复杂的数学建模成为了可能,逐渐成为建模过程中必不可少的重要工具。
一、数学建模的主要特点
数学建模的分析流程包括:通過调查分析了解现实对象,做出研究假设,用数学语言构建约束条件,得出实际问题的解决方案。而数学建模与数学研究相比,有着自身的显著特点。
1.数学建模与数学研究不同,更侧重于解决实际问题。以2016年全国大学生数学建模竞赛为例,四道题目分别为:系泊系统的设计、小区开放对道路通行的影响、电池剩余放电时间预测、风电场运行状况分析及优化。可以看出,数学建模主要研究工业与公共事业规划等应用问题,比纯粹数学研究更为实际,更讲究可操作性。
2.数学建模中的模型设定具有主观性,合理修缮模型能够得出更为精确的解决方案。对于同一现实问题,不同的模型设定者的思路、角度、约束条件等参数都有所不同,因而数学建模中的模型设定是具有主观性的。在实际运用中,完美的模型很难建立,模型的多次修改与完善才能够更好地达到预期的效果。
3.数学建模涉及的学科领域更为宽泛,一般需要运用海量数据和复杂计算。数学建模的运用领域涉及到工业规划、环境保护、经济管理等交叉学科,数据的种类与数量往往十分庞大,运算过程较为复杂,一般需要重复引用并多次计算。以全国大学生数学建模竞赛2015年B题“互联网+时代出租车资源配置”为例,涉及学科包括交通规划、公共服务、人口学等领域,在建模求解中很可能将处理出行周转量、出租车数量、人口数等大量数据。
二、计算机技术在数学建模运用中的主要功能
1.计算机为数学建模提供了海量计算与存储的强大支持。自1946年2月世界上第一台电子数字计算机ENIAC诞生开始,计算机的存储与计算能力迎来了飞速发展。超级计算机的出现,更是使计算机的运行能力达到了新的量级。现如今,计算机的大容量智能存储与超高速的计算能力,使得气象分析、航空航天与国防军工等尖端研究课题的数学建模成为了可能。
2.计算机为数学建模提供了更为直观全面的多媒体显示。目前,以计算机为载体的文字、图像、图形、动画、音频、视频等数字化的存储与显示方式被大量运用,使得交互式的信息交流和传播变得更加顺畅。在数学建模中,多学科的涉及使得建模过程中的显示、推断与监测变得尤为重要,而计算机的出现大幅提高了信息传递、显示、交互的效率。
3.计算机自动化、智能化的属性与数学建模相辅相成,互相促进。在计算机的辅助下,程序能够智能化地进行模型建立、模型漏洞的修缮,避免了低效率的计算过程。例如,某个关键数据或参数的修改,对于整个模型是“牵一发而动全身”的,计算机不仅能够保存多个版本的计算结果,它的智能引用还能够使得各项计算自动引用修改后的新数据,从而使整个模型时刻保持统一。
4.计算机模拟能在不确定的条件下模拟现实生活中难以重复的试验,大幅降低了实验成本,缩短了辅助决策的时间。由于在实际问题中,我们所需参数的值通常是不确定的,无法用数学分析的方法分析和建立数学模型,且通过大量实验来确定参数的过程从时间、人力、物力等因素都要付出昂贵的代价,甚至从客观上无法进行。而计算机通过历史数据或者特定函数或概率关系能够建立预测模型,得到目标值的概率分布从而辅助决策过程。
下面我们以经济管理中的项目决策为例,简要分析计算机模拟的强大功能。
假设我们要启动某大型商场的建造,目标是利润最大化,但项目成本与项目收益都是不确定的,我们便可以建立数学模型,辅助我们的投资决策过程。
(1)模型建立
建立基本的函数关系,构建目标变量。在本案例中,收入减去支出等于利润为最基本的关系,而利润最大化即为目标。
(2)具体参数输入
分析每项变量的影响因素,收集相关数据。在收入中,决定因素包括了消费人数和人均消费额,这两项参数又可由商圈人流量、地理位置、居民的人均收入、商场的档次定位几项参数决定。在成本中,商品成本、以广告费用为主的销售费用、管理费用、财务费用和非经常性项目构成了主要成本。值得注意的是,有些指标之间是具有相关性的,例如商圈地理位置将影响到租金,商场的定位将影响所售商品的成本,而销售费用除了直接影响支出以外,在一般情况下也与收入成正相关关系。这些复杂相关关系的运算量很大,使用计算机能够高效地实现计算和模拟。
(3)具体参数预测
分析每项细分参数的概率分布,控制输入。可以通过静态模拟和动态模拟进行预测。例如人流量、人均收入等都是不可控变量,可通过不断的实时数据输入进行预测,而销售费用等变量可通过内部管理进行调控,可以使用特定比例等方式直接进行静态预测。
(4)结果分析
根据各项变量的概率分布,我们可以根据不同变量的特定值进行组合,从而得到特定组合下的利润值,最终得到利润在其值域上的概率分布,从而辅助我们的决策过程。例如,在利润为负(即亏损)的概率超过某个百分比时不启动项目,在利润超过某个值的概率超过某个百分比时启动项目。
笔者认为,计算机模拟集合了海量存储与计算、仿真与模拟等功能,是数学建模中最为强大的运用,大幅提高了决策过程的效率。现如今,计算机模拟已经在经济管理决策、自然预测等方面起到了重要作用。
三、计算机技术在数学建模中的主要运用工具
3.1数学软件
MATLAB和Mathematica、Maple并称为三大数学软件,是数值分析计算、数据可视化等领域的高级计算语言,不仅能够对微积分、代数、概率统计等领域进行常规求解,还在符号、矩阵计算方面各有特长。这些软件是数学建模中运用最为广泛的工具。
3.2图像处理
(1)Photoshop:著名的图像处理软件,主要运用于平面設计与图像的后期修饰。
(2)CAD:可视化的图像处理软件,能够实现三维绘图,广泛运用于工程设计领域。图像处理软件能够满足部分建模问题中精确构图显示的要求,例如工程设计等问题,CAD的三维建模能够有效协助决策分析。
3.3统计软件
(1)R语言:免费开源的统计软件,程序包可以实现强大的统计分析功能。
(2)SPSS:入门级统计软件,能够完成描述性统计、相关分析、回归分析等基础的统计功能。
(3)SAS:专业的数据存储与分析软件,具备强大的数据库管理功能,广泛运用于工业界。统计软件能够满足数学建模中对于海量数据存储与分析的要求,是建模分析中最为重要的工具。
3.4专业编程软件
(1)C++:严谨、精确的程序设计语言,因其通用性与全面性被广泛运用。
(2)Lingo语言:“交互式的线性和通用优化求解器”,是一种求解线性与非线性规划问题的强大工具。专业的编程语言能够结合、辅助其他类软件进行程序编写,完成特定情况下的建模、规划等问题。例如Lingo语言,便能实现在规划类问题中优化分析、模型求解等强大功能。
四、结束语
数学作为研究数量关系和空间形式的基础科学,已经成为了解决众多实际问题的重要指导思想之一。而计算机作为规模化、智能化、自动化的计算工具,将进一步扩展数学思想在众多领域的基础实践。可以预见的是,广泛运用计算机技术的数学建模理论,将不断运用到社会发展各个方面,协助人类攻坚克难,在追求真理的道路上坚定前行、永不止步。
参 考 文 献
[1]高瑾,林园. 浅谈计算机技术在数学建模中的重要应用[J]. 深圳信息职业技术学院学报,2016,(03):54-57.
[2]夏魁良,李春锐. 计算机与数学建模的关系初探[J]. 黑龙江科技信息,2009,(28):94.
[3]王芳,赵晗,程松. 论计算机在数学建模中的应用[J]. 科教文汇(下旬刊),2007,(11):78+88.