梅依贤
摘 要:光钎通信系统已经被推向我国通信市场,但是研究人员对高速通信系统的关注程度更高。对此,我国通信部门已经对空间激光通信技术展开了研究分析。空间激光通信技术相比传统的通信技术具有以下应用优势:一是传输速率高,二是天线尺寸小,三是抗干扰性强,四是保密性好。很多国家都在加大空间激光通信技术的研究力度和资金量,特别是ESA。长距离的通信也只能依靠空间激光通信技术才能实现,这是光钎通信技术无法实现的。由此可以看出,空间激光通信技术具有广阔的发展前景。
关键词:空间激光通信技術 最新进展 趋势
中图分类号:TN929.1 文献标识码 文章编号:1672-3791(2016)11(b)-0003-02
空间激光通信具有通信容量大,通信速率、抗干扰能力强,抗截获能力强和重量轻等多种优点,是以激光为载波,在空间中实现多种信息进行无线传输的通信方式。从历年的空间激光通信技术的发展历程来看,ESA的作用不可小视,ESA代表空间激光通信技术的最高水平,对于空间激光通信技术的发展有很大影响。但是,对于我国而言,我国空间激光通信技术还处在发展的初级阶段,还在摸索空间激光通信技术的发展方向,可结合本国的情况借鉴发达国家空间激光通信技术的发展经验。
1 空间激光通信技术最新进展
目前,国内外空间激光通信发展迅速,欧洲、美国、日本、德国等地区和国家对空间激光通信技术进行了大量的研究,为空间激光通信技术做出了巨大的研究贡献。如表1所示,展示了近几年美国等国在空间激光通信技术研究方面比较有代表性的成果。
2 空间激光通信技术发展趋势
2.1 直接探测体制发展
相比而言,空间激光通信直接探测体制的结构比较简单,操作起来比较方便,因而被广泛应用于第一代激光通信系统内部。但是,从实际空间激光通信环境来看,光强度对通信系统的影响比较大,而且会受到噪音的干扰,空间激光通信直接探测体制无法满足空间激光通信系统的运行需求,敏感度较低。经过空间激光通信专业人士的多年研究,ESA于2008年被安装在卫星上,对空间激光通信系统进行端口检测,同时也对相干通信展开了实验分析,误码率非常小,而且信息传输的速度非常快。目前,空间激光通信技术还将不断完善。为了不断提高激光通信系统的实用性和通用性,未来的发展趋势是探测体制的发展从单一体制向复合探测体制转变。
2.2 传统量子通信的变革
1980年量子通信被首次提出,量子通信应用了加密技术,可以保证传输信息的绝对安全,量子通信一提出就受到了人们的广泛关注。2004年,经过多位空间激光通信科学家的研究实验,实现了量子通信的远距离传输,量子通信可以透过地面大气依旧保持纠缠特性。2006年,量子通信实现了超远距离的空间通信。截止到目前为止,我国科学家对于量子通信的研究已经创造了新的历史。量子通信具有巨大的发展潜力,空间激光通信研究人员也正是看重了量子通信的这一巨大发展潜力,研究人员从2002—2007年展开了多项研究,总结出影响量子通信的多种因素。经过几年的发展,传统量子通信的变革研究的技术逐渐成熟,正在快速向实用化、加密化迈进。将卫星光通信与量子光通信相结合,进行卫星光通信中的量子密钥分发是卫星光通信保密技术一个新的发展方向。
2.3 光子集成化升级
空间激光通信光子技术包括:一是光纤光学,二是集成光学,三是微光子学。光子技术具有以下特点和优点:一是损耗较小,二是协议透明,三是抗干扰性强,四是不诱导电磁干扰,五是重量小,六是体积小,七是柔韧性好,八是无互相耦合。空间激光通信光子技术特别适合应用于航天环境中;1990年,美国经过实验证明光子技术确实可以应用于航天器中;2002年,研发部门加大了研究光子技术的资金量,研究的内容为:一是通信链路,二是模数转换,三是频率转换,四是本振生成,五是光束形成网络,六是传感,七是成像光纤;2009年,西方国家发射出的卫星上就设置了光子器件。如今,空间激光通信光子技术正朝着光子PCB的方向发展,空间激光通信技术标准也在不断提高。
2.4 天基网络的一体化演变
空间激光通信技术发展的最终目标是实现全球数据覆盖,与地面形成网络链路。在空间激光通信技术的研究初期,研究人员把更多的精力放在空间激光通信链路的研究和实验上。2000年后,研究人员开始加大天基网络一体化演变的研究力度。如今,空间激光通信研究人员提出了天基混合网络结构,并对天基网络的性能和所带来的经济效益做出了研究分析。但是,我国的天基网络一体化演变还处在理论研究阶段,还未真正实践,还有很多空间激光通信技术问题亟需解决。
2.5 空间激光通信向深空迈进
人们一直想更加深入地了解星空,国外发达国家自20世纪90年代初期便开始了以激光通信作为深空探测通信方式的相关研究。近几年人们对天空的探索热潮一直不退。如今,研究人员把探索星空的希望寄托在空间激光通信技术上,西方国家也在加大空间激光通信技术应用于卫星上的研究力度。空间激光通信研究人员经过多年的努力,收到了不错的成果。在ESA和NASA(美国国家航空航天局)未来的深空探测计划中,激光通信将成为深空探测活动的主要通信方式。
3 结语
从实际空间激光通信环境来看,光强度对通信系统的影响比较大,而且会受到噪音的干扰,直接探测体制无法满足空间激光通信系统的运行需求,敏感度较低。2004年,经过多位科学家的研究实验,量子远距离的传输通信实现了,透过地面大气量子通信可以依旧保持纠缠特性。如今,光子技术正朝着光子PCB的方向发展,空间激光通信技术标准也在不断提高。空间激光通信技术发展的最终目标是实现全球数据覆盖,与地面形成网络链路。但是,我国的天基网络一体化演变还处在理论研究阶段,还未真正实践,还有很多空间激光通信技术问题亟需解决。截止到目前为止,我国科学家对于空间激光通信的研究已经创造了新的历史。
参考文献
[1]张靓,郭丽红,刘向南,等.空间激光通信技术最新进展与趋势[J].飞行器测控学报,2013(4):286-293.
[2]李玮.激光通信测距技术发展现状及趋势研究[J].激光与红外,2013(8):864-866.
[3]王晓海.国外空间激光通信系统技术最新进展[J].现代电信科技,2006(3):41-45.
[4]姜会林,安岩,张雅琳,等.空间激光通信现状、发展趋势及关键技术分析[J].行器测控学报,2015,34(3):207-217.