乘法分配律有效教学的研究

2017-03-15 17:27李冉
小学科学·教师版 2016年11期
关键词:结合律分配律陷阱

李冉

为了能更好地进行乘法分配律的教学,我重新思考了乘法分配律的有效教学起点,改变了教材的呈现形式,并对教材进行了整合与规划,一步一个脚印,一节课一种题型,适时进行比较辨析,让学生从本质上理解了乘法分配律。

一、准确把握教学的起点,从乘法意义的角度理解乘法分配律

其实仔细想来,早在二年级学习“两位数乘一位数”及其口算时学生就开始不自觉地使用乘法分配律了,只不过当时没有把它提炼出来转化为学生的自觉认识,而是从乘法意义的角度予以解释说明。如6+5×6这样的题,学生很容易就理解了一个6加上5个6一共是6个6,其实这不就是乘法分配律吗?既然这样,如果借助乘法意义去教学,帮助学生找到新知识与旧知识的连接点,教学会不会轻松一些呢?

所以我对教材进行了一些改革,借助学生之前学过的两位数乘一位数的口算,以最核心的乘法意义引入,根据意义建立模型,提前将典型错题进行干预,并提炼生活中的乘法分配律例子,让学生充分感知,夯实乘法分配律知识的建构。

从乘法意义上理解乘法分配律,确实可以避免形式上的机械模仿而形成思维定势,在进行不同题目、不同形式的综合练习时,能凸显"计算有法,但无定法,有理可循"的数学思想,之后相关的简算练习,会大大降低错误率。

二、整合教材重新规划课时,通过分类降低乘法分配律的教学难度

我把乘法分配律分成了两种类型,一种是正用乘法分配律,也就是分,这种类型又可以分成三类,第一类是简单类型,也就是不需要拆成两数之和或差,直接应用乘法分配律;第二类是把一个数分成两数之和,然后正用乘法分配律,如25×101;第三类是把一个数分成两数之差,然后正用乘法分配律。另一种是反用乘法分配律,也就是合,这种类型也分为三类,第一类是简单类型,直接根据公式合并;第二类是99×25+25,通过加法合并成100个25;第三类是101×25-25,通过减法合并成100个25。以下是每节课的教学安排:

第一课时,教学乘法分配律的正应用,即A×(B+C)=A×B+A×C,还要类推出A×(B-C)=A×B-A×C,这里主要突出它与众不同的特性,既没有位置变化,也非运算顺序的变化,数也没有变,只是由左边三个数变成右边的四个数。然后引导学生思考既然乘和与乘差都可以运用乘法分配律,再次猜想:乘乘可以运用乘法分配律吗?乘除可以运用乘法分配律吗?

第二课时,正应用的变式,即38×102,25×99。

第三课时,乘法分配律(正应用)与乘法结合律的对比练习。

首先,复习两种规律,回忆其独有的特点。对比异同时出示一组对比题,25×(4+40)和25×4×40,引导学生观察:这两组算式有什么相同点?有什么不同点?各应该运用什么定律计算?然后,再出示,25×44,学生一般会出现两种方法:44可以分成(4×11), 44还可以分成(4+40),一定要让学生知道各运用什么运算定律。

第四课时,乘法分配律的反应用,如117×3+117×7, 138×32-138×2;再出示一种类型37×99+37, 84×101-84。

第五课时,乘法分配律正反应用对比,如25×99与25×99+25, 25×101与25×101-25。

三、加强易混类型的辨析,在比较中揭示乘法分配律的本质

1. 加强三种运算定律的比较,突出乘法分配律的独有特性

教学乘法分配律后,我接着进行了乘法交换律、结合律和分配律的比较,让学生寻找不同点。学生在比较中发现交换结合律左右都只有一种运算符合,而且左边有几个数,右边就有几个数,只是数的位置和运算顺序发生变化。而乘法分配律有两种运算符号,左边有3个数,右边有4个数,我紧接着提问:“为什么会有这样的变化?”学生在分析比较中继续深入的理解乘法分配律分别相乘再相加的独有特性。

2.以变制变,巧设陷阱,使学生在“落入”和“走出”陷阱的过程中克服思维定势

在练习中我借助各种形式,不断地变化简便计算的各种类型,并巧妙设下一些陷阱,通过对比教学,加深学生对乘法分配律的正反应用的理解。

针对掌握知识的薄弱环节,巧设“陷阱”让学生充分暴露易犯的错误,然后再根据学生所出现的错误,激发学生的学习热情,引导学生展开讨论,深入剖析。当他们落入“陷阱”而还陶醉在“成功”的喜悦中时,适时指出他们的错误,并通过正误辨析,让他们从错误中猛醒过来,记取教训,往往能收到“吃一堑长一智”的效果,自然给学生留下深刻的印象。通过测试,尽管还有部分学生对于分配律的變式有些糊涂,但对题率明显提高,每节课基本都在75%以上,大部分学生基本能够分辨分配律与结合律,并能灵活运用。

3. 借助错例,使学生不仅知其然,更知其所以然

《数学课程标准》清楚地指出:“在基本技能的教学中,不仅要使学生掌握技能操作的程序和步骤,还要使学生理解程序和步骤的道理。”重视过程与重视结果是一种动态的关系。连续几节课我有针对性地将学生的错例呈现在黑板上,让学生分析错因,重点放在为什么出现这样的错误,如何计算才是正确的?学生在反复练习的过程中,自然加深了对乘法分配律本质的理解。

四、增加有针对性练习,提高学生简便计算的灵活程度

教材中简便计算的练习量比较少,学生通过练习很难熟练掌握相关类型,所以只有增加有针对性练习,正反比较,让学生在练习中熟能生巧。另外短平快式练习、我当小医生练习、在解决问题中强化练习、学生自己出题练习等多样化的练习方式,既可以激发学生的练习兴趣,避免单一枯燥,也可以从不同的角度对运算定律、性质进行巩固,达到对知识的真正掌握。

五、结语

美国教育心理学家奥苏贝尔说过:“如果我不得不把教育心理学还原为一条原理的话,我将会说,影响学习的最重要的原因是学生已经知道了什么,我们应该根据学生原有的知识状况去教学。”通过对乘法分配律的整合教学,我体会到从学生的角度出发备课的重要性。课堂教学首先应该充分了解学生的实际情况,不能忽视学生这一主体。教师和学生看问题的角度不同,教师看待问题是从高处往下看,而学生是站在低处往上看,学生会在很多地方产生思维障碍。如果教师不站在学生的角度思考,帮学生扫除障碍,那么课堂的有效性就得不到提高。

【作者单位: 济南胜利大街小学 山东】

猜你喜欢
结合律分配律陷阱
乘法分配律的运用
除法中有“分配律”吗
除法也有分配律吗
探究求和问题
活用乘法分配律
基数意义下自然数的运算(二)
陷阱
巧用乘法结合律简算
陷阱2
陷阱1