刘腾飞,周建康,黄团结,邢 衢,许 玲,张夏清,王亚苹,杨 波,马珊珊,关方霞
· 综 述 | REVIEW ARTICLES ·
人脐带间充质干细胞移植治疗创伤性颅脑损伤的研究进展
刘腾飞1,周建康1,黄团结1,邢 衢1,许 玲1,张夏清1,王亚苹1,杨 波2,马珊珊1,关方霞1
创伤性颅脑损伤(traumatic brain injury,TBI)是发生在中枢神经系统的一种常见疾病。近年来人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)移植为其治疗提供了新思路。间充质干细胞(mesenchymal stem cells,MSCs)能优先归巢到受损组织,分泌多种因子从而发挥营养、保护、清理、激活和桥接作用。但是,目前干细胞移植治疗TBI的研究大部分还处于实验动物模型阶段,其在临床上的安全性和有效性仍缺乏有效证据,还需要在大宗和长期的临床试验中进行评价和验证。笔者对hUC-MSCs移植治疗TBI的研究进展情况作一综述,为其开展更为广泛的研究提供有益参考。
人脐带间充质干细胞;移植;创伤性颅脑损伤
创伤性颅脑损伤(traumatic brain injury,TBI)是头部受到暴力所造成的损伤,已成为全球性的公共卫生问题。TBI后生存患者常存在神经功能缺失和行为能力障碍,给家庭和社会造成沉重的负担。临床上对TBI急性期的治疗手段主要有清创止血、手术减压、药物脱水降颅压、营养神经、高压氧治疗及对症支持等多种方法以促进受损中枢神经系统的恢复;对TBI患者远期的治疗主要是进行肢体功能康复训练。虽然这些治疗措施在一定程度上可改善患者的神经功能,但往往不能获得较理想的效果。
随着基础医学的不断进步,干细胞移植有望成为一种治疗神经类疾病的新途径,而干细胞移植治疗TBI在动物实验上已取得良好的效果[1]。目前,国内干细胞移植所采用的“种子细胞”多局限于几种传统的成体干细胞[如骨髓源间充质干细胞(mesenchymal stem cells,MSCs)],虽然这些细胞也能促进神经功能的恢复,但在来源、取材、制备和数量等方面均受到了很大限制。因此,需要一种更加具有优势的“种子细胞”来弥补传统细胞的不足[2]。而人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)作为一种来源于中胚层并具有自我复制和多向分化潜能的成体干细胞,近年来备受瞩目。研究发现,hUC-MSCs移植可促进多种中枢神经系统损伤疾病的神经修复[3-6]。现将hUC-MSCs移植治疗TBI的研究现状作一综述。
1.1病理生理 人体在受到TBI后,病理生理过程主要分为两个阶段,即原发性损伤阶段和继发性损伤阶段。原发性损伤是由于创伤所造成的机械性脑组织损伤,可直接造成血管破坏和神经细胞损伤;继发性损伤是由原发性损伤所引发的一系列病理生理过程,其始于创伤后的数分钟,可持续数周、数个月甚至数年,这一过程涉及血脑屏障的破坏、脑血管反应、脑水肿、兴奋性中毒、线粒体功能的破坏和伴随的炎性反应等,其中炎性反应被认为是造成继发性损伤的关键因素。由于原发性损伤具有不可逆性,所以临床上治疗TBI应从防治继发性损伤着手,如进行营养因子修复、减轻炎性反应等[7-9]。
1.2动物模型的构建方法 TBI动物模型的构建方法有很多种,如Feeney自由落体硬膜外撞击法[10]、液压撞击法[11]和冷冻法[12]等。这些方法一般都是在撞击或冷冻前在左侧颅骨上开一个合适大小的骨窗,且保持硬膜的完整,然后利用自由落体的撞击、液压的冲击力或硬膜接触的冷冻对实验动物造成损伤。其中Feeney自由落体硬膜外撞击法可通过调整打击高度和重物质量来控制脑损伤的程度,是一种较经典的TBI动物模型构建方法。其实无论何种动物模型的制作,一般均需要满足以下条件:(1)损伤机制与临床实际相接近并能反应客观问题;(2)外力大小可有效预测损伤结果;(3)造成损伤的外力具有可计量性、可重复性和可控性;(4)模型可充分模拟人脑 TBI 特征,并具有可计量性和可重复性;(5)实验结果可用生理学、形态学或行为学参数表达[13]。
人脐带在妊娠的第五周开始发育,最终长度在50 cm左右。研究表明,从新鲜脐带的脐血、沃顿胶组织和静脉内皮下层等几个区域均能成功获取hUCMSCs[14-16]。其中沃顿胶组织富含透明质酸,占据了脐带的大部,其成纤维细胞周围还具有水凝胶结构,故目前的研究更倾向于从脐带沃顿胶组织中分离出hUCMSCs。
hUC-MSCs和其他MSCs一样,至今尚未明确其表面的特异性标志。细胞形态、流式细胞检测结果和多向分化潜能均可作为hUC-MSCs的判别标准,而在实际研究中常使用流式细胞仪对hUC-MSCs进行细胞表面抗原鉴定以增强实验说服力。以往的流式细胞检测研究显示,MSCs的表面标志主要包括以下几类:(1)黏附分子类,如CD44、CD54和CD106等;(2)整合素家族,如CD29、CD49和CD104等;(3)生长因子和细胞因子受体,如白细胞介素-1(interleukin-1,IL-1)、白细胞介素 -3(interleukin-3,IL-3)和肿瘤坏死因子 -α(tumor necrosis factor-α,TNF-α)等;(4)其他,如 CD105、CD90 等[17]。
hUC-MSCs移植治疗具有如下优点:(1)hUCMSCs是从脐带中分离出来的,而脐带属于医疗废弃物,来源广泛,易获取;(2)hUC-MSCs具有较稳定的干细胞特性,多次传代后,仍具有稳定的多向分化潜能,可通过诱导分化成脂肪源性、肌源性、骨源性及神经源性前体细胞;(3)hUC-MSCs能分泌多种细胞因子,如脑源性神经生长因子;(4)hUC-MSCs临床应用前景广泛,可用于治疗缺血性、神经损伤性等疾病;(5)hUCMSCs低表达主要组织相容性复合体Ⅰ类分子,不表达主要组织相容性复合体Ⅱ类分子,具有低免疫原性,适于不同物种个体之间的移植;(6)hUC-MSCs不存在太多的伦理道德问题[18,19]。
转分化是指在某些理化因素作用下一种类型的细胞或组织转变为另一种细胞或组织的现象[20]。hUCMSCs在体外可转分化为具有神经干细胞特点的hUCMSCs源神经球。研究者将hUC-MSCs源神经球和hUC-MSCs分别移植到TBI大鼠模型上,并对它们的治疗效果进行比较,以确认移植前的转分化是否有必要。研究发现,转分化在提高hUC-MSCs向神经样细胞分化能力的同时却降低了hUC-MSCs分泌神经营养因子的能力。进一步研究发现,未转分化的hUC-MSCs对TBI后的认知功能恢复及组织结构的保护效果更好,提示hUC-MSCs在移植前没有必要进行转分化[21,22]。
hUC-MSCs和创伤脑组织相互作用能产生多种因子[23,24]。这些因子不仅有利于局部微环境的改善,还利于受损神经的修复[25,26],同时也利于内源性神经干细胞分化成神经细胞而进行自我修复[27]。但是,单纯hUCMSCs移植对TBI的修复作用还不够理想,可结合生物工程材料、基因修饰、基因沉默、药物和物理等手段综合治疗。研究发现,脑源性神经营养因子、促红细胞生成素等基因修饰的hUC-MSCs可在大鼠脑组织中存活和迁移,并可明显改善TBI模型大鼠的神经学功能[28,29];Ras超家族成员A基因沉默的hUC-MSCs也可明显改善TBI后大鼠的神经学功能[30]。另外,hUCMSCs移植联合高压氧治疗、C5a受体拮抗剂和短肽-脑源性神经营养因子肽支架等也能对TBI产生较好的治疗效果[31-33]。
MSCs是干细胞家族的重要成员,来源于发育早期的中胚层,属于多能干细胞,最早发现于骨髓中,随后还发现存在于人体发生、发育过程的多种组织。研究发现,骨髓、脂肪、滑膜、骨骼、肌肉、肺、肝、胰腺、脐带、羊水及脐带血中均能被分离和制备出MSCs[34,35]。
5.1 MSCs移植途径、时机和剂量的选择 MSCs治疗TBI动物模型的移植途径主要有大脑实质立体定向注射、脑室内注射和静脉注射等,以上途径均可获得归巢的干细胞和一定程度上的神经功能恢复。相比较而言,每种移植途径均存在一定缺点。立体定向脑实质内注射和脑室内注射必然会对脑组织造成损伤,有加重神经功能缺损的风险;而静脉移植虽然是一种非侵袭性移植途径,但迁移至损伤组织的细胞数量非常有限,另外,小鼠静脉细、难以辨认,进针成功率低,且进针后易发生肿胀,MSCs易渗漏,这给MSCs的定量注射带来了一定困难[36-38]。
关于MSCs移植时间窗和功能恢复的关系,现阶段尚无定论。如果移植过早,TBI后炎性介质释放增多,细胞毒性物质也会随之增加,此时的脑组织微环境并不利于MSCs的存活。如果移植过晚,由于脑损伤的自我修复已达到了一定程度,血脑屏障的通透性减弱,通过血脑屏障进入大脑的MSCs就更少了。目前,研究认为在TBI后24 h进行干细胞移植的效果较好,且移植的干细胞具有一定的时效性,其量随时间延长而不断减少[39],因此,在临床上治疗TBI宜采用多次移植的方法。关于MSCs移植剂量和功能恢复的关系,现阶段也无明确定论。MSCs移植的剂量可受多种因素影响,如细胞的来源、宿主的差异等。有研究者认为中等量(1×106个细胞)移植效果比较理想[40-43]。
5.2治疗机制
5.2.1 MSCs优先归巢到受损组织 干细胞归巢是指自体或外源性干细胞在多种因素的作用下,发生趋向性迁移,越过血管内皮细胞至靶向组织并定植存活的过程。袁源等[11]利用hUC-MSCs移植治疗TBI模型大鼠,术后观察到穿刺道损伤皮质处存在大量的5-溴脱氧尿嘧啶核苷(5-bromo-2-deoxyuridine,BrdU)阳性表达细胞,这说明hUC-MSCs可在宿主体内很好地存活并发生定向迁移。目前,对干细胞的归巢机制尚未完全掌握,尤其是对MSCs的动员机制。已有研究表明,基质衍生因子 1(stromal cell derived factor-1,SDF-1)与其受体CXCR4结合所形成的SDF-1/CXCR4轴是促进MSCs向损伤组织归巢的一个重要生物轴[44]。受损组织能上调SDF-1的表达,使局部SDF-1的浓度升高并向周围扩散。表面表达CXCR4的MSCs能沿着SDF-1的浓度梯度到达损伤部位从而参与组织修复。SDF-1/CXCR4轴还具有增加MSCs存活率和增殖活性、抑制MSCs凋亡等作用[45-47]。目前,SDF-1及其受体CXCR4对MSCs的趋化作用是一个研究热点。另外,肝细胞生长因子(hepatocyte growth factor,HGF)及其受体c-met构成的HGF/c-met轴、干细胞因子(stem cell factor,SCF)及其受体c-kit构成的SCF/c-kit轴、胰岛素样生长因子、粒细胞集落刺激因子、血小板衍生因子和血管内皮生长因子等亦均被证明出与MSCs的归巢机制有关[48-50]。
5.2.2 MSCs的细胞替代作用 一直以来,学术界认为移植的MSCs主要是通过分化成神经元、替代坏死神经元来发挥治疗作用的。然而研究表明,hUC-MSCs在移植治疗TBI 1周后,治疗组神经功能较对照组已经有了显著改善[51]。推测在如此短的时间内,MSCs很难分化为成熟的功能神经元,即便是分化出成熟的神经元也很难真正整合到宿主复杂的神经网络结构中。hUC-MSCs在移植治疗TBI 4周后,确实有部分hUCMSCs分化成了神经样细胞,但现在还缺乏充足的实验证据证明这种由hUC-MSCs分化而来的神经元样细胞与大脑皮质神经元间是否存在真正意义上结构与功能的整合。同时Yuan等[11]发现神经元特异性烯醇化酶(neuron specific enolase,NSE)和胶质原纤维酸性蛋白(glial fibrillary acidic protein,GFAP)阳性细胞的数量很少,且并无明显的轴突或树突状突起,不足以重建损伤的神经结构。因此,MSCs的细胞替代作用很有可能不是促进神经功能恢复的主要机制[11]。
5.2.3其他机制 MSCs移植治疗TBI还可能通过以下作用机制来实现[52-55]。(1)营养作用:MSCs能分泌神经营养因子,并促进受损脑组织与其相互作用分泌血管内皮生长因子、脑源性神经生长因子和神经生长因子等,这对损伤局部微环境的改善起着重要作用。(2)保护作用:减少胶质瘢痕形成和继发损伤的组织丢失,其保护作用主要是通过拮抗兴奋性氨基酸的神经毒性,提高清除自由基的能力,减少迟发性神经元死亡,抑制凋亡因子表达和稳定细胞内钙离子浓度等。(3)清理作用:MSCs在脑组织内转化为某类细胞,吞噬溃变的轴突碎片和解体的髓鞘。(4)激活作用:迁移到受损脑组织区的MSCs可通过激活处于休眠状态的内源性神经干细胞从而对受损区神经元发挥修复作用。(5)桥接作用:移植的MSCs可为创伤性脑损伤宿主的轴突再生提供一个连接通道,让再生的神经轴突顺利通过损伤处,为脑损伤处两侧残端重新建立神经突触联系创造了条件。
TBI的治疗是一个世界性难题。随着动物体内实验的进步,科学家和神经外科医师们急于通过临床试验来探索干细胞移植对TBI患者的治疗方案。现已有一些TBI患者参与到了临床试验,但由于存在临床试验的固有障碍,包括患者病理生理过程的不同和伦理等问题。目前为止,尚无一个安全有效的治疗方案。故hUC-MSCs移植在临床上正式成为一种安全有效的治疗方法之前,仍需要更深入的研究。
[1]Ding D C, Shyu W C, Lin S Z. Mesenchymal stem cells [J].Cell Transplant, 2011, 20(1): 5-14. DOI: 10.3727/09636 8910X.
[2]黄 华. 人脐带间充质干细胞治疗大鼠脊髓损伤及其对内源性干细胞的影响[D]. 郑州:郑州大学,2013.
[3]Xie J, Wang B, Wang L,et al. Intracerebral and intravenous transplantation represents a favorable approach for application of human umbilical cord mesenchymal stromal cells in intracerebral hemorrhage rats [J]. Med Sci Monit,2016,22: 3552-3561. DOI: 10.12659/MSM.900512.
[4]Cui Y B, Ma S S , Zhang C Y,et al. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer's disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis[J]. Behav Brain Res, 2017,320: 291-301. DOI: 10.1016/j.bbr.2016.12.021.
[5]Hwang J W, Choi S, Oh W,et al. Intracerebroventricular transplantation of human umbilical cord blood derived mesenchymal stem cells attenuates symptoms of repetitive mild traumatic brain injury (RM TBI) [J]. Cytotherapy,2017,19(5 Supp l): S201. DOI: 10.1016/j.jcyt.2017.02.303.
[6]Zhou L, Mo B L, Qiu S J,et al. Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury [J]. Brain Res, 2016, 1642: 426-435. DOI:10.1016/j.brainres.2016.04.025.
[7]Barkhoudarian G, Hovda D A, Giza C C. The molecular pathophysiology of concussive brain injury-an update [J].Phys Med Rehabil Clin N Am, 2016, 27(2): 373-393.DOI: 10.1016/j.pmr.2016.01.003.
[8]Prins M L, Matsumoto J. Metabolic response of pediatric traumatic brain injury [J]. J Child Neurol, 2016, 31(1):28-34. DOI: 10.1177/0883073814549244.
[9]Margulies S S, Anderson G D, Atif F,et al. Combination therapies for traumatic brain injury: retrospective considerations [J]. J Neurotrauma, 2016, 33(1): 101-112.DOI: 10.1089/neu.2014.3855.
[10]张文进. 人脐带沃顿胶间充质干细胞移植治疗对大鼠脑损伤区微循环的影响[D]. 郑州:郑州大学,2014.
[11]Yuan Y, Yang S, Zhang J. Human umbilical cord derived mesenchymal stem cell transplantation for rat traumatic brain injury [J]. CJTER, 2011, 15(45): 8424-8428. DOI:10.3969/j.issn.1673-8225.2011.45.014.
[12]Zhu J, Hong J, Cui J,et al. Adipose mesenchymal stem cells for treatment of traumatic brain injury [J]. CJTER,2017, 21(1): 71-76.
[13]Cernak I. Animal models of head trauma [J]. Neurorx,2005, 2(3): 410-422. DOI: 10.1602/neurorx.2.3.410.
[14]Meng X, Sun B, Xue M,et al. Comparative analysis of microRNA expression in human mesenchymal stem cells from umbilical cord and cord blood [J]. Genomics, 2016,107(4): 124-131. DOI: 10.1016/j.ygeno.2016.02.006.
[15]Joerger-Messerli M S, Marx C, Oppliger B,et al.Mesenchymal stem cells from Wharton's jelly and amniotic fluid [J]. Best Pract Res Clin Obstet Gynaecol, 2016, 31:30-44. DOI: 10.1016/j.bpobgyn.2015.07.006.
[16]Boyd N L, Nunes S S, Krishnan L,et al. Dissecting the role of human embryonic stem cell-derived mesenchymal cells in human umbilical vein endothelial cell network stabilization in three-dimensional environments [J]. Tissue Eng Part A, 2013, 19(1-2): 211-223. DOI: 10.1089/ten.tea.2011.0408.
[17]彭 琴,张 蕾. hUC-MSCs肝样细胞分化机制的研究进展[J]. 中国细胞生物学学报,2016, 38(9): 1134-1143.
[18]Fan C G, Zhang Q J, Zhou J R. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord [J]. SCRR, 2011, 7(1): 195-207. DOI: 10.1007/s12015-010-9168-8.
[19]Huang C, Zhao L, Gu J,et al. The migration and differentiation of hUC-MSCs(CXCR4/GFP) encapsulated in BDNF/chitosan scaffolds for brain tissue engineering[J]. J Biomed Mater Res, 2016, 11(3): 1748-6041. DOI:10.1088/1748-6041/11/3/035004.
[20]Stone L. Transdifferentiation results in resistance [J].Nat Rev Urol, 2017, 14(7): 1759-4812. DOI: 10.1038/nrurol.2017.68.
[21]洪孙权. 转分化和未转分化人脐带间充质干细胞在脑损伤修复中的比较研究[D]. 广州:南方医科大学,2012.
[22]Hong S Q, Zhang H T, You J,et al. Comparison of transdifferentiated and untransdifferentiated human umbilical mesenchymal stem cells in rats after traumatic brain injury [J]. Neurochem Res, 2011, 36(12): 2391-2400. DOI: 10.1007/s11064-011-0567-2.
[23]Munoz J R, Stoutenger B R, Prockop D J. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice[J]. PNAS, 2005, 102(50): 18171-18176. DOI: 10.1073/pnas.0508945102.
[24]Buzanska L, Jurga M, Stachowiak E K,et al. Neural stemlike cell line derived from a nonhematopoietic population of human umbilical cord blood [J]. Stem Cells Dev, 2006,15(3): 391-406. DOI: 10.1089/scd.2006.15.391.
[25]Neuhoff S, Moers J, Rieks M,et al. Proliferation,differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro [J]. Exp Hematol, 2007, 35(7): 1119-1131. DOI: 10.1016/j.exph em.2007.03.019.
[26]Pang K M, Sung M A, Alrashdan M S,et al. Transplantation of mesenchymal stem cells from human umbilical cord versus human umbilical cord blood for peripheral nerve regeneration [J]. Neural Regen Res, 2010, 5(11): 838-845. DOI: 10.3969/j.issn.1673-5374.2010.11.006.
[27]Lou S, Gu P, Chen F,et al. The effect of bone marrow stromal cells on neuronal differentiation of mesencephalic neural stem cells in Sprague-Dawley rats [J]. Brain Res,2003, 968(1): 114-121. DOI: 10.1016/S0006-8993(03)0 2224-8.
[28]Yuan Y, Pan S, Sun Z,et al. Brain-derived neurotrophic factor-modified umbilical cord mesenchymal stem cell transplantation improves neurological deficits in rats with traumatic brain injury [J]. Int J Neurosci, 2014, 124(7):524-531.
[29]Zhong Z, Lü J. Therapeutic effect of erythropoietin gene modified umbilical cord derived mesenchymal stem cells transplantation on the morphology of brain cells and the recovery of neurological function in traumatic brain injury rats [J]. CJTER, 2012, 16(6): 1036-1040. DOI: 10.3969/j.issn.1673-8225.2012.06.020.
[30]Feng S, Han J. Treatment of traumatic brain injury in rats by RhoA gene silencing combined with umbilical cord mesenchymal stem cell transplantation [J]. CJTER, 2013, 17(1): 23-30. DOI: 10.3969/j.issn.2095-4344.2013.01.004.
[31]Zhou H, Liu Z, Liu X,et al. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury [J]. Neural Regen Res, 2016, 11(1): 107-113.DOI:10.4103/1673-5374.175054.
[32]Lu J X, Yin H. Treatment of traumatic brain injury by human umbilical cord mesenchymal stem cells transplantation combined with C5a receptor antagonist [J].CJTER, 2011, 15(49): 9182-9185.
[33]Shi W, Huang C, Xu X,et al. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury[J]. Acta Biomater, 2016, 45: 247-261. DOI: 10.1016/j.actbio.2016.09.001.
[34]Igura K, Zhang X, Takahashi K,et al. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta [J]. Cytotherapy, 2004, 6(6): 543-553. DOI: 10.1080/14653240410005366.
[35]Campagnoli C, Roberts I A, Kumar S,et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow [J]. Blood, 2001, 98(8): 2396-2402. DOI: 10.1182/blood.V98.8.2396.
[36]Bao X J, Liu F Y, Lu S,et al. Transplantation of Flk-1+human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and anti-inflammatory and angiogenesis effects in an intracerebral hemorrhage rat model [J]. Int J Mol Med, 2013, 31(5): 1087-1096. DOI:10.3892/ijmm.2013.1290.
[37]Lee S H, Kim Y, Rhew D,et al. Impact of local injection of brain-derived neurotrophic factor-expressing mesenchymal stromal cells (MSCs) combined with intravenous MSC delivery in a canine model of chronic spinal cord injury [J]. Cytotherapy, 2017, 19(1): 1465-3249. DOI: 10.1016/j.jcyt.2016.09.014.
[38]Park S E, Jung N Y, Lee N K,et al. Distribution of human umbilical cord blood-derived mesenchymal stem cells(hUCB-MSCs) in canines after intracerebroventricular injection [J]. Neurobiol Aging, 2016, 47: 192-200. DOI:10.1016/j.neurobiolaging.2016.08.002.
[39]Chen N, Shen N, He J,et al. Changes of BDNF after treatment of traumatic brain injury with human umbilical cord blood mesenchymal stem cells in rats [J]. J Shandong Univ Health Sci, 2013, 51(1): 22-26.
[40]Kim J W, Ha K Y, Molon J N,et al. Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation [J]. Spine, 2013, 38(17):1065-1074. DOI: 10.1097/BRS.0b013e31829839fa.
[41]Han M Y, Feng S Q, Li H,et al. Transplantation of human umbilical cord-derived mesenchymal stem cells for the treatment of spinal cord injury in rats [J]. CRTER, 2010, 14(19): 3483-3489. DOI: 10.3969/j.issn.1673-8225.2010.1 9.013.
[42]张振梁,杨新明,孟宪勇,等. 丙戊酸联合骨髓间充质干细胞移植对大鼠脊髓损伤的影响[J]. 中国临床药理学杂志,2017,33(8): 714-717. DOI: 10.13699/j.cnki.1001-6821.2017.08.012.
[43]孙佳佳,周 军,杨惠林. 骨髓间充质干细胞移植治疗大鼠脊髓损伤的抗慢性应激作用[J]. 中华创伤杂志,2016(4): 337-343. DOI: 10.3760/cma.j.issn.1001-8050.2016.04.014.
[44]Kitaori T, Ito H, Schwarz E M,et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model [J]. Arthritis Rheum, 2009, 60(3): 813-823. DOI: 10.1002/art.24330.
[45]Falco E D, Porcelli D, Torella A R. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells [J]. Blood, 2004, 104(12):3472-3482. DOI: 10.1182/blood-2003-12-4423.
[46]Lapidot T, Dar A, Kollet O. How do stem cells find their way home? [J]. Blood, 2005, 106(6): 1901-1910. DOI:10.1182/blood-2005-04-1417.
[47]马绍华,浦 波,舒 钧,等. 间充质干细胞归巢的研究进展[J]. 医学综述, 2011, 17(4): 507-510. DOI:10.3969/j.issn.1006-2084.2010.05.013.
[48]Ponte A L, Marais E, Gallay N,et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells:comparison of chemokine and growth factor chemotactic activities [J]. Stem Cells, 2007, 25(7): 737-1745. DOI:10.1634/stemcells.2007-0054.
[49]Ishibashi S, Sakaguchi M, Kuroiwa T,et al. Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in mongolian gerbils [J]. Neurosci Res, 2004, 78: 215-223.DOI: 10.1002/jnr.20246.
[50]刘慧纯. 人脐带间充质干细胞移植治疗大鼠脑缺血损伤的实验研究[D]. 天津:天津医科大学,2012.
[51]Mahmood A,Lu D Y,Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury [J]. J Neurotrauma, 2004, 21(1): 33-39. DOI:10.1089/089771504772695922.
[52]张天祥,杨 波,关方霞,等. 静脉移植人脂肪间充质干细胞治疗大鼠颅脑损伤[J]. 中国组织工程研究与临床康复,2011, 15(14): 2551-2556. DOI: 10.3969/j.issn.1673-8225.2011.14.018.
[53]Darkazalli A, Vied C, Badger C D,et al. Human mesenchymal stem cell treatment normalizes corticalgene expression after traumatic brain injury [J]. J Neurotrauma,2017, 3(4): 204-212. DOI: 10.1089/neu.2015.4322.
[54]Wang Z, Wang Y, Wang Z,et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury [J]. Stem Cells, 2015, 33(2): 456-467. DOI:10.1002/stem.1878.
[55]Zhang R, Liu Y, Yan K,et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury [J]. J Neuroinflamm, 2013, 10(1): 1-12. DOI: 10.1186/1742-2094-10-106.
Research progress of human umbilical cord mesenchymal stem cell transplantation in the treatment of traumatic brain injury
LIU Tengfei1, ZHOU Jiankang1, HUANG Tuanjie1, XING Qu1, XU Ling1, ZHANG Xiaqing1, WANG Yaping1, YANG Bo2, MA Shanshan1, and GUAN Fangxia1. 1. School of Life Science, Zhengzhou University, Zhengzhou 450001, China; 2. Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
MA Shanshan, E-mail: mashanshan84@163.com
Traumatic brain injury (TBI) is a common disease that occurs in the central nervous system and recently human umbilical cord mesenchymal stem cells (hUC-MSCs) transplantation provides a new method for its treatment. Mesenchymal stem cells (MSCs)preferentially target the damaged tissues and secrete a variety of factors that exert their functions of nutrition, protection, cleaning, activation and bridging. However, the study of stem cell transplantation in the treatment of traumatic brain injury most is still in experimental stage of animal models and lacks effective evidence in clinical safety and effectiveness, which also needs to be evaluated and validated in large and long-term clinical trials. This paper reviews the progress of hUC-MSCs transplantation in the treatment of traumatic brain injury, and hopes to provide references for the future extensive research.
R318
Key wordshuman umbilical cord mesenchymal stem cells; transplantation; traumatic brain injury
10.13919/j.issn.2095-6274.2017.11.017
国家自然科学基金资助项目(81601078,U1404313,81471306);河南省高校科技创新团队(15IRTSTHN022);河南省科技创新人才计划(154200510008);河南省国际人才合作项目(2016GH03,2016GH15);河南省重点科技攻关项目(152102310272)
作者单位:1. 450001,河南省郑州大学生命科学学院;
2. 450052,河南省郑州大学第一附属医院神经外科
马珊珊,E-mail: mashanshan84@163.com
(2017-08-22收稿2017-10-23修回)
(本文编辑 张亚丽)