党永辉,刘仲伟,刘 鹏,王家蓓
1西安交通大学医学部法医学院卫生部法医学重点实验室教育部环境与疾病相关基因重点实验室,西安 710061 2陕西省人民医院心血管内科,西安 710061 3马里兰大学药学院药物科学系,美国马里兰 21201
·综述·
三联组氨酸核苷结合蛋白1及其在神经精神疾病中的功能
党永辉1,刘仲伟2,刘 鹏1,王家蓓3
1西安交通大学医学部法医学院卫生部法医学重点实验室教育部环境与疾病相关基因重点实验室,西安 7100612陕西省人民医院心血管内科,西安 7100613马里兰大学药学院药物科学系,美国马里兰 21201
三联组氨酸核苷结合蛋白1(HINT1)是三联组氨酸(HIT)酶家族成员,作为核苷水解酶或转移酶起作用,其生物学功能尚不清楚。HINT1蛋白可在多种组织中表达,在转录和信号转导中发挥重要作用。早期研究已经明确HINT1是单倍剂量不足的肿瘤抑制因子;也有研究表明HINT1广泛参与一系列生理过程,且部分功能与其基本的酶活性无关;新近研究表明这一蛋白与诸多外周、中枢神经系统疾病存在密切关系,在遗传性周围神经病、精神分裂症、心境障碍、药物成瘾、唐氏综合征等神经精神疾病中起作用。本文针对HINT1蛋白在以上不同神经精神疾病中的作用做了详细综述,分析归纳了HINT1在上述每一种疾病中的研究发现,以期对今后该蛋白的深入研究起到一定的指导作用。
三联组氨酸核苷结合蛋白1;神经病理
三联组氨酸核苷结合蛋白(histidine triad nucleotide binding protein,HINT)是三联组氨酸(histidine triad,HIT)蛋白核苷酸转移酶和水解酶超家族成员,包含高度保守的活性位点基序His-X-His-X-His-XX(X代表疏水氨基酸)[1]。HINT亚家族十分古老,广泛表达于原核生物和真核生物,但其生物学功能尚未完全阐明。已经发现在得到全长测序的所有基因组中至少存在1个HINT,人类基因组包括3个独立的基因,分别编码HINT1、HINT2及HINT3基因产物。HINT2与HINT1有61%的序列一致性,而HINT3与HINT1仅有28%的序列一致[2]。
HINT1蛋白编码基因位于人类染色体5q31.2,其基因序列全长6160 bp,含有3个外显子,mRNA序列由782个碱基组成,编码产物是含126个氨基酸的细胞溶质蛋白,相对分子质量约14×103[3- 4]。
HINT1 1990年被首度发现是蛋白激酶抑制剂[5],在早期文献中一直被称作蛋白激酶C抑制剂- 1(protein kinase C inhibitor- 1,PKCI- 1)[6- 7]。尽管HINT1可能存在与蛋白激酶C(protein kinase C,PKC)的直接或间接交互作用,其PKC抑制作用现在被认为是存疑的[8],也正因为如此,PKCI- 1被重新命名为HINT1[1]。但目前有文献依然沿用PKCI- 1这一名称或是指Klein等[8]发现该蛋白能与PKC交互作用,遂将其命名为蛋白激酶C交互作用蛋白1(protein kinase C-interacting protein 1,PKCI 1),最近研究表明其中的PKCγ作为在神经元突触后膜的特异性蛋白,在HINT1敲除鼠的多个脑区高表达,但其活化却受到抑制[9]。根据结构研究,HINT1属嘌呤核苷酸结合蛋白[1,10],形成同源二聚体起作用,每一个亚单位结合1个核苷酸。
HINT1蛋白在多种组织中表达,在人类和啮齿类动物的肝、肾、脑、胃中均有分布[8]。HINT1蛋白广泛分布于小鼠中枢神经系统(central nervous system,CNS),尤其在嗅觉系统、大脑皮层、海马和部分丘脑、中脑、延髓中丰度较高[11]。
HINT属于HIT酶家族的一个分支,主要包括HINT1、HINT2和HINT3,催化AMP- lysine、AMP-alanine、AMP-NH2 P-N键的水解过程,然而这一酶的生物学功能尚不清楚。
HINT2分布于肝脏、肾上腺皮质和胰腺等脏器,主要在细胞的线粒体内膜中,可能参与促进胆固醇由胞质向线粒体的转运,这一点与主要分布在细胞质的HINT1蛋白不同[12]。而HINT3与其他HINT蛋白不同,序列上的同源性较小,对酰基核苷酸底物有着特殊的亲和性。研究人员采用HINT1基因敲除(knockout,KO,HINT1-/-)小鼠研究HINT1在肿瘤发生中的作用,结果显示,在2~3岁时,KO小鼠自发性肿瘤发生率明显高于野生型(wild type,WT)小鼠[13- 14]。在使用致癌剂诱导乳腺肿瘤发生时,HINT1-/-小鼠乳腺和卵巢肿瘤的发生率较之HINT1+/+小鼠显著增加;而HINT1-/-和HINT1+/-具有同样的肿瘤发生率,说明HINT1单等位基因表达似乎不足以抑制肿瘤,因此HINT1是单倍剂量不足肿瘤抑制因子[13]。HINT1对于氨基磷酸酯和酰基腺苷酸具有水解酶活性[15- 16],但这一活性与其肿瘤抑制功能是否相关仍不清楚。
HINT1作为肿瘤抑制因子的作用机制并不完全清楚。最研究表明,HINT1抑制转录因子激活物蛋白- 1[17]、转录因子Ⅱ H[18]、小眼畸形转录因子[19- 20]和上游刺激因子2[21]的活性,影响Wnt/beta-catenin通路上一些基因的转录过程[22]。因此,HINT1可能作为基因转录调节因子发挥重要的细胞功能,并进一步发挥肿瘤抑制蛋白的作用[23- 24]。HINT1在人类特异性肿瘤中的表达缺陷与临床相关性是目前研究的热点之一。
HINT1广泛参与一系列生理过程,部分功能与其基本的酶活性无关[25]。除了肿瘤抑制功能,该蛋白还参与DNA损伤反应[13],调控细胞内钙离子信号传导[26],参与一些蛋白及转录因子的调控[9,24,27]。此外,还有证据表明细胞膜HINT1可经由PKC调控G蛋白偶联受体(G-protein-coupled receptor,GPCR)功能[28- 32],调控谷氨酸N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体与GPCR如μ阿片受体(μ-opioid receptor,MOR)和大麻素1型受体(cannabinoid receptors type 1,CNR1)的相互作用[33]。HINT1在细胞膜以同源二聚体形式存在,作为受氧化还原过程调控的支架蛋白而起作用,使各种通路受GPCR调控[34- 35],并可能以这种方式调节HINT1蛋白的酶活性与其开启或关闭GPCR中介的不同信号通路的功能[36],如谷氨酸NMDA受体中介的突触可塑性、β-catenin调控、钙离子信号与DNA修复。尽管存在如此多研究,但我们仍缺乏对这些现象本质的认识。
HINT1在神经系统中的生物学功能是新近的发现,我们新近的一项研究提示HINT1可能与多种神经精神疾病潜在相关[37],其他研究则表明这一分子参与多种神经精神疾病的发病。
精神分裂症HINT1基因位于5q31.2遗传位点内,这一区域与精神分裂症关联[38- 39]。精神分裂症是一种临床常见但病因不是十分清楚的精神疾病,临床表现包括幻觉、妄想、认知障碍、情感及行为异常等。这一疾病的病因极其复杂,包括遗传易感性与表观遗传和环境因素的交互作用[40]。
Vawter等[41- 42]研究发现,精神分裂症患者背外侧前额皮质(dorsolateral prefrontal cortex,DLPFC)内的HINT1 mRNA低水平表达,他们随后采用RT-PCR和原位杂交方法进一步证实了上述结论[43]。Chen等[44]在一项对染色体5q22- 33区域进行的精细定位研究中发现,SPEC2/PDZ-GEF2/ACSL6区域单倍型与精神分裂症关联,而HINT1基因位于这一区域中。此后,他们对爱尔兰精神分裂症高发家族研究(Irish study of high density schizophrenia families,ISHDSF;含1350个受试者及273个家系)及爱尔兰精神分裂症病例—对照研究(Irish case-control study of schizophrenia,ICCSS;含655受累个体和626例对照)样本HINT1基因周围区域8个SNPs进行鉴定,又通过斯坦利医学研究所提供的精神分裂症患者和健康对照者尸脑样本cDNA对比HINT1表达水平,发现HINT1的变异可能与精神分裂症关联[3]。Varadarajulu等[45]比较了精神分裂症患者与健康对照者死后DLPFC和丘脑的HINT1蛋白表达,发现HINT1在DLPFC下调,在丘脑上调,2011年一项研究也有类似发现[46]。上述研究还发现HINT1与精神分裂症的关联存在性别特异性,可能仅存在于男性患者[3,43- 44]。
上述病例研究结果得到了HINT1 KO小鼠研究结果的支持。美国马里兰大学的研究人员发现,与WT对照相比,HINT1 KO小鼠自主活动减少;急性给予苯丙胺(amphetamine,AMPH)可显著增加WT小鼠自主活动,但KO小鼠对此的反应更加明显;定量微透析研究结果表明,KO小鼠纹状体或者伏核(nucleus accumbens,NAc)内多巴胺(dopamine,DA)动力学没有发生改变,AMPH急性增加DA水平的能力也没有改变,这说明KO小鼠行为的改变与这些区域突触前DA神经传递功能无关。该研究进一步发现与WT小鼠相比,系统性给予多巴胺受体直接激动剂阿扑吗啡也可显著增加KO小鼠的自主活动,提示KO小鼠突触后的DA功能发生了改变[47]。上述结果证实,HINT1在调节AMPH行为反应中发挥重要作用,其缺失可能导致突触后DA传递功能紊乱。考虑到精神分裂症多巴胺能神经系统功能亢进的发病假说[48],与此同时在精神分裂样动物模型中,AMPH诱发的高活动性被视为啮齿类动物精神分裂症阳性症状样行为改变,并与精神分裂症阳性症状的皮层下多巴胺功能亢进相关[49],因此HINT1 KO小鼠似乎可作为精神分裂症的遗传性动物模型。
周围神经病遗传性运动感觉性周围神经病(hereditary motor and sensory neuropathy,HMSN)是累及外周神经系统(peripheral nervous system,PNS)的神经肌肉和神经变性性障碍,干扰脑与躯体的联系。它们是最常见到的遗传性神经肌肉障碍,大约2500个个体中就有1个发病[50]。该病分为7型(Ⅰ~Ⅶ),其中Ⅰ、Ⅱ两型又称为腓骨肌萎缩症(charcot-marie-tooth disease,CMT)[51]。HMSN囊括一大组涉及多个基因和复杂表型的疾病,因此正确诊断各遗传亚型对于临床医生来说是一个棘手的问题。目前已鉴定出超过100种不同亚型的HMSN,每一种均有其特异的临床特征、病理生理及预后。不同的临床特征和发展模式已被用于区分特异的遗传亚型,指导分子筛选并提供合理的遗传咨询。然而直到最近,仍有许多病例未明确突变,因而无法进行分子诊断。近年来对CMT的临床研究发现了诸多与该病相关的基因,其中就包括HINT1[52- 54]。有案例报道表明,HINT1突变有其特殊的症状表型[55]。
Zimon等[56]对50个具有神经性肌强直(neuromyotonia,NM)的常染色体隐性轴突性神经病(autosomal recessive axonal neuropathy,ARAN)患者进行鉴定,结果发现8个不同的HINT1突变。NM是一种罕见的神经肌肉障碍,通常发生于儿童晚期到成年早期。这一障碍以由PNS运动轴突过度兴奋引起肌肉自主收缩后迟发性松弛为特征[57]。Zimon等[56]详细记录了神经传导、同心针肌电图及肌肉/神经活检等临床特征,为了确证HINT1与具有NM的ARAN之间的连锁关系,又对262个散发的具有常染色体隐性遗传外周神经病的无关患者进行了HINT1突变筛选,结果发现HINT1突变的频率为11%,而在ARAN-NM患者则增至76%,表现出非常强的因果性遗传关联。
Zimon等[56]还分析了HINT1在成年小鼠不同组织(包括心脏、肌肉、脑、脊髓、坐骨神经、脾脏、肝脏和肺脏)中的表达,结果发现HINT1蛋白在小鼠坐骨神经中高表达,这说明HINT1是PNS功能的重要组分。他们继而进行了功能性确证实验,其结果进一步表明HINT1突变属功能丧失性突变。因此,HINT1功能丧失性突变属常染色体隐性遗传神经病新基因,决定了一种新遗传亚型,即ARAN-NM。然而,HINT1在遗传性周围神经病变病理生理中的角色依然未知,猜测可能与PNS毒性代谢产物的蓄积有关[56]。Zimon等[58]的最新工作通过对包括HINT1在内的一些CMT基因进行筛选分析,可以完成对 41.3%CMT患者的分子诊断。
然而,Seburn等[59]检测了HINT1 KO小鼠,发现与WT小鼠相比,KO小鼠虽然在旷场实验中移动较慢,活动时间减少,但其运动相关测试结果未见异常;其肌肉、神经肌接头及郎飞结结构正常,无变性或再生迹象;4~13月龄时外周神经轴突数和髓鞘形成正常;4月龄时虽然轴突略小,但传导速度并不减少;13月龄时轴突直径无差异;在使用非生理刺激或应激源后,如降低温度、阻滞钾通道,肌电图无法记录到神经肌强直。作者据此认为HINT1 KO小鼠可能对研究HINT1蛋白的生物化学活性有效,但对HINT1相关神经病和神经肌强直则不能认为是一种动物模型。
此外,Horga等[60]通过对152例英国及西班牙遗传性神经病患者的直接测序并未发现HINT1基因的变异,这表明HINT1与该病的关联关系存在地域特异性[60- 62]。还有研究表明HINT1突变也会导致远端遗传性运动神经病(distal hereditary motor neuropathies,dHMNs)[53]。
心境障碍心境障碍是以显著而持久的情感高涨(躁狂)或低落(抑郁)为主要特征的一组精神障碍,临床上主要表现有抑郁症(major depressive disorder,MDD)和双相障碍(bipolar disorder,BP)。
Elashoff等[63]对12篇采用微阵列技术研究双相障碍的文献进行了Meta分析,结果发现双相障碍患者脑组织中HINT1表达下降。对HINT1 KO小鼠的研究则发现:与WT对照相比,KO小鼠的抗抑郁样行为增多;急性给予300 mg/kg心境稳定剂丙戊酸盐(valproic acid,VPA)可缓解KO小鼠在悬尾实验(tail suspension test,TST)中的活动异常;在水迷宫定位导航任务中,KO小鼠表现出学习与记忆能力增强[64];而HINT1 KO小鼠下午血浆皮质酮水平显著高于WT。HINT1 KO小鼠表现出的行为和内分泌表型说明HINT1缺乏会导致情绪功能发生改变,产生抗抑郁样行为及血浆皮质酮升高,这就是说,HINT1基因在CNS中参与情绪调控,HINT1的缺乏可能导致躁狂样行为。
与此相对应的是,Martins-de-Souza等[65]采用蛋白质组学方法分析24例MDD患者和12例匹配对照者死后DLPFC脑组织,继而采用Wetern blot法或质谱法确证差异性蛋白表达,结果发现MDD患者HINT1表达增加,且只在无精神病性症状的MDD增加。Ge等[66]对大鼠慢性温和应激(chronic mild stress,CMS)抑郁模型海马进行分析,结果发现HINT1水平比对照组大鼠高,而经潜在抗抑郁剂长链脂肪酸酰胺油酰胺干预后HINT1并不降低,据此作者推测HINT1可能是MDD的生物标志物。
焦虑障碍HINT1与焦虑障碍的关系未见临床相关研究报道,主要集中于基因敲除小鼠的研究。
Barbier等[47]研究发现,与WT对照相比,HINT1 KO雄性小鼠自主活动减少;在水迷宫中表现出较少趋触性;在明暗箱测试期间KO小鼠焦虑样行为减少,也就是说HINT1缺乏所致情绪行为发生改变包括抗焦虑样行为[64]。
然而,Varadarajulu等[67]对雄性HINT1 KO小鼠进行了一系列行为测试后发现,与WT小鼠相比,HINT1 KO雄性小鼠自主活动及普通探索活动无显著性差异;在高架十字迷宫及明暗箱测试中,HINT1 KO小鼠较其同窝WT小鼠表现出更多的焦虑样行为。
Jackson等[68]发现尼古丁急性给药并不对HINT1 KO雄鼠产生抗焦虑作用,而是产生致焦虑反应,安定也不能诱导这些小鼠的抗焦虑反应,说明HINT1 KO雄鼠存在广泛性焦虑的表型;上述焦虑样行为并未在雌鼠中得到观察,这进一步支持HINT1的影响具有性别差异。
如上所述,利用基因敲除小鼠进行焦虑样行为结果不尽一致,推测可能与在实验方法、实验装置、动物年龄(尤其是动物年龄,Barbier等[47]采用的动物年龄较大)等方面存在的差异有关。
疼痛与镇痛人类μ阿片受体属于GPCR,是吗啡镇痛和阿片成瘾的重要分子靶点。Guang等[32]首次发现HINT1与人类MOR受体C末端特异性的交互作用减少了MOR的脱敏和磷酸化;考虑到MOR的磷酸化和脱敏在吗啡耐受中发挥重要作用,他们进行了吗啡慢性给药后热板实验,结果表明在HINT1 KO小鼠基础痛阈升高,同时吗啡诱导的镇痛效应显著增强,并且KO小鼠表现出对吗啡镇痛的较大程度的耐受,这说明HINT1在MOR中介的吗啡镇痛中起负性调节作用[32]。Jackson等[68]发现雄性HINT1 KO小鼠在甩尾测试而非热板测试中,对急性给予尼古丁引起的抗伤害感受效应缺乏敏感性。我们对HINT1 KO鼠的研究则发现,在基础状态下,HINT1 KO小鼠在热板、机械刺激痛测试及福尔马林炎性痛测试中痛觉感受均表现出更高的敏感性,此外,并未发现有性别差异[69]。有研究人员发现了HINT1蛋白稳定MOR受体、CNR1等GPCR和谷氨酸亲离子受体N(GLuN,即NMDA)的关联,这种偶联对吗啡的镇痛效力是必需的,在神经病理性疼痛发生时,GLuN过度激活,MOR受体、CNR1与GLuN的关联减弱[70- 71]。Garzon等[72]运用HINT1酶活性抑制剂鸟苷- 5’-色胺氨基甲酸酯(guanosine- 5’-tryptamine carbamate,TpGc)的研究发现,TpGc显著提高了吗啡的镇痛作用,防止了耐受的形成。在分子层面,TpGc降低了MORS募集NMDAR活动及负性调节阿片信号传导的能力。小鼠经历长期神经压榨损伤伴随着NMDA受体活性增加,单次脑室内给予TpGc可减弱NMDA受体功能,减轻机械性异常疼痛(触诱发痛)。这表明,HINT1抑制剂可在急性和神经病理性疼痛的临床治疗中发挥潜在的作用。然而,一项对2294位欧洲癌痛患者的关联研究未能发现HINT1基因的SNP变异与阿片类药物使用剂量存在显著关联[73]。
药物成瘾来自两个独立样本的关联分析表明,HINT1基因变异与尼古丁依赖的表型关联,进一步的人类死亡后mRNA表达分析表明吸烟状态与表型和HINT1脑内表达水平有关;动物研究中,Western blot分析表明慢性尼古丁给药后小鼠的NAc内HINT1蛋白水平增加,而在给予尼古丁拮抗剂美卡拉明,或者停止给予尼古丁24和72 h后,HINT1增加幅度减少[74]。Fang等[75]对284例目前或继往吸烟的中国人群的SNP分析发现,HINT1 rs3853309与吸烟状态相关。上述研究结果表明HINT1和尼古丁依赖存在遗传关联,尼古丁对HINT1水平的调节可能参与尼古丁成瘾过程。然而在一项包括374位尼古丁依赖吸烟者的开放式随机试验中,他们接受尼古丁替代治疗(nicotine replacement therapy,NRT),实验结果并不支持HINT1基因变异与戒烟成功间存在关联[76]。
Jackson等[77]对雄性HINT1 KO和WT小鼠进行了尼古丁条件位置偏爱(conditioned place preference,CPP)实验,评估了尼古丁戒断的躯体和情绪症状,并对尼古丁戒断后条件性位置厌恶(conditioned place aversion,CPA)的形成进行了测定,结果发现尼古丁不能使HINT1 KO小鼠产生显著性CPP,HINT1 KO小鼠尼古丁戒断时痛觉过敏和躯体症状较轻,表现出与WT对照相似的显著性尼古丁戒断性CPA。这一研究进一步支持HINT1基因在调节与尼古丁奖赏和尼古丁躯体戒断相关行为中发挥作用。
HINT1与其他成瘾性药物的关系研究较少。Romanova等[78]利用基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption/ionization time of flight mass spectrometry,MALDI-TOF-MS)技术发现在单次注射10 mg/kg可卡因后,旷场实验中可卡因低反应大鼠(low cocaine responders,LCRs)内侧前额皮质(medial prefrontal cortex,mPFC)中HINT1峰强度增加。而已有的研究表明LCRs较之高反应者(high cocaine responders,HCRs)对可卡因诱导的行为敏化更敏感[79- 80],表现出对可卡因奖赏效应的CPP增加[81],对可卡因自我给药动机增强[82]。这就是说,HINT1在可卡因成瘾的易感表型LCRs中表达升高。
脑衰老衰老是阿尔茨海默病(Alzheimer’s disease,AD)等神经变性障碍的主要高危因素。然而,脑衰老过程中的分子变化极端复杂,并且大部分尚不清楚。Abdel Rassoul等[83]对哺乳动物倭狐猴颞叶皮层转录组进行了研究,鉴定出695个基因在老年动物、AD样动物与年轻成年动物皮层间存在差异。这些基因大约1/3在健康衰老动物和AD样动物中表现出相同的表达变化——其中包括HINT1和HINT2基因的下调,而超出2/3的基因在这两组动物中与年轻健康动物相比表达改变相反。结合前述2~3岁KO小鼠自发性肿瘤发生率比WT小鼠高得多,以及焦虑样行为在不同年龄KO小鼠可能表现不一的结果,可以猜测HINT1可能参与脑衰老过程,但可能不参与AD发病过程。
唐氏综合征Weitzdoerfer等[84]采用蛋白质组学技术测定人类流产胎儿皮层组织,结果发现,出生前参与神经分化、迁移和突触传递的早期生命蛋白在唐氏综合征患者皮层存在缺陷,其中包括HINT1。
自从发现HINT1蛋白参与各种生物的多种生命现象以来,人们对于其研究兴趣一直有增无减。尽管这一领域已经有许多研究成果发表,HINT1在细胞生理中的真实功能依然不得而知。HIT蛋白在进化中较为保守,这说明HINT1行使着基本而重要的生理功能。HINT1神经病理功能是一个新兴的研究领域。
一方面,初步研究表明HINT1广泛参与各种神经系统的病理生理过程,继续深入研究HINT1酶活性、肿瘤抑制、神经病理之间的内在联系是一个突出的科学问题。例如,HINT1可发挥酶活性使5’- O-单硫代磷酸酯发生脱硫作用,在细胞内产生游离的硫化氢(H2S)[85];而H2S作为重要的气体信号分子,在肿瘤、精神系统疾病及心血管疾病等中均发挥重要作用[86- 87]。总之,HINT1在转录及信号转导中的作用,可能会有助于揭示HINT1本质的细胞生理功能。
另一方面,HINT1与GPCR、NMDA之间的交互作用关系则是一个极有希望的对所有本文所涉及神经精神疾病的治疗具有启示意义的重要研究方向[88]。例如,CNR1受体C末端序列及NMDA受体NR1亚基C1节段均与HINT1蛋白二聚体直接相互作用,HINT1起加强二者联系的作用[88- 89],HINT1缺乏时,NMDA受体不能与CB1建立功能性的交互作用,大麻类不能减少NMDA受体中介的钙流量、NO产物产生以及钙和锌从内部储存释放[34]。这一机制可解释大麻滥用产生NMDAR功能减退,从而引起精神病性症状或精神分裂症复发的临床现象。并且,NMDA受体功能不足新近被认为引起了精神分裂症患者纹状体和前额区的多巴胺能功能失调[90],这使得这一视角更具吸引力。
相信随着更多采用基因工程小鼠的实验开展,HINT1对神经病理和肿瘤发生的作用将会逐渐被阐明。
[1] Brenner C,Garrison P,Gilmour J,et al. Crystal structures of HINT demonstrate that histidine triad proteins are GalT-related nucleotide-binding proteins [J].Nat Struct Biol,1997,4(3):231- 238.
[2] Maize KM,Wagner CR,Finzel BC. Structural characterization of human histidine triad nucleotide-binding protein 2,a member of the histidine triad superfamily [J].FEBS J,2013,280(14):3389- 3398.doi:10.1111/febs.12330.
[3] Chen Q,Wang X,O’Neill FA,et al. Is the histidine triad nucleotide-binding protein 1(HINT1) gene a candidate for schizophrenia[J].Schizophr Res,2008,106(2- 3):200- 207.doi:10.1016/j.schres.2008.08.006.
[4] Brenner C. Hint,Fhit,and GalT:function,structure,evolution,and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases [J].Biochemistry,2002,41(29):9003- 9014.
[5] Pearson JD,DeWald DB,Mathews WR,et al. Amino acid sequence and characterization of a protein inhibitor of protein kinase C [J].J Biol Chem,1990,265(8):4583- 4591.
[6] Martin J,St-Pierre MV,Dufour JF. Hit proteins,mitochondria and cancer [J].Biochim Biophys Acta,2011,1807(6):626- 632.doi:10.1016/j.bbabio.2011. 02.001.
[7] Huebner K,Saldivar JC,Sun J,et al. Hits,Fhits and Nits:beyond enzymatic function [J].Adv Enzyme Regul,2011,51(1):208- 217.doi:10.1016/j. advenzreg.2010.09.003.
[8] Klein MG,Yao Y,Slosberg ED,et al. Characterization of PKCI and comparative studies with FHIT,related members of the HIT protein family [J].Exp Cell Res,1998,244(1):26- 32.doi:10.1006/excr.1998.4153.
[9] Zhang F,Fang Z,Wang JB. Hint1 knockout results in a compromised activation of protein kinase C gamma in the brain [J].Brain Res,2015,1622:196- 203.doi:10.1016/j.brainres.2015.06.029.
[10] Bai G,Feng B,Wang JB,et al. Studies on ligand binding to histidine triad nucleotide binding protein 1 [J].Bioorg Med Chem,2010,18(18):6756- 6762. doi:10.1016/j.bmc.2010.07.051.
[11] Liu Q,Puche AC,Wang JB. Distribution and expression of protein kinase C interactive protein(PKCI/HINT1) in mouse central nervous system(CNS) [J].Neurochem Res,2008,33(7):1263- 1276.doi:10.1007/s11064- 007- 9578- 4.
[12] Lenglet S,Antigny F,Vetterli L,et al. Hint2 is expressed in the mitochondria of H295R cells and is involved in steroidogenesis [J].Endocrinology,2008,149(11):5461- 5469.doi:10.1210/en.2008- 0400.
[13] Li H,Zhang Y,Su T,et al. Hint1 is a haplo-insufficient tumor suppressor in mice [J].Oncogene,2006,25(5):713- 721.doi:10.1038/sj.onc.1209111.
[14] Su T,Suzui M,Wang L,et al. Deletion of histidine triad nucleotide-binding protein 1/PKC-interacting protein in mice enhances cell growth and carcinogenesis [J].Proc Natl Acad Sci USA,2003,100(13):7824- 7829.doi:10.1073/pnas.1332160100.
[15] Bieganowski P,Garrison PN,Hodawadekar SC,et al. Adenosine monophosphoramidase activity of Hint and Hnt1 supports function of Kin28,Ccl1,and Tfb3 [J].J Biol Chem,2002,277(13):10852- 10860.doi:10.1074/jbc.M111480200.
[16] Chou TF,Baraniak J,Kaczmarek R,et al. Phosphoramidate pronucleotides:a comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins [J].Mol Pharm,2007,4(2):208- 217.doi:10.1021/mp060070y.
[17] Wang L,Zhang Y,Li H,et al. Hint1 inhibits growth and activator protein- 1 activity in human colon cancer cells [J].Cancer Res,2007,67(10):4700- 4708.doi:10.1158/0008- 5472.can- 06- 4645.
[18] Korsisaari N,Makela TP. Interactions of Cdk7 and Kin28 with Hint/PKCI- 1 and Hnt1 histidine triad proteins [J].J Biol Chem,2000,275(45):34837- 34840. doi:10.1074/jbc.C000505200.
[19] Lee YN,Nechushtan H,Figov N,et al. The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcepsilonRI-activated mast cells [J].Immunity,2004,20(2):145- 151.
[20] Razin E,Zhang ZC,Nechushtan H,et al. Suppression of microphthalmia transcriptional activity by its association with protein kinase C-interacting protein 1 in mast cells [J].J Biol Chem,1999,274(48):34272- 34276.
[21] Lee YN,Razin E. Nonconventional involvement of LysRS in the molecular mechanism of USF2 transcriptional activity in FcepsilonRI-activated mast cells [J].Mol Cell Biol,2005,25(20):8904- 8912.doi:10.1128/mcb. 25.20.8904- 8912.2005.
[22] Huber O,Weiske J. Beta-catenin takes a HIT [J].Cell Cycle,2008,7(10):1326- 1331.doi:10.4161/cc.7.10.5926.
[23] Wu XS,Bao TH,Ke Y,et al. Hint1 suppresses migration and invasion of hepatocellular carcinoma cellsinvitroby modulating girdin activity [J].Tumour Biol,2016,37(11):14711- 14719.doi:10.1007/s13277- 016- 5336-z.
[24] Shi Z,Wu X,Ke Y,et al. Hint1 up-regulates IkappaBalpha by targeting the beta-TrCP subunit of SCF E3 ligase in human hepatocellular carcinoma cells [J].Dig Dis Sci,2016,61(3):785- 794.doi:10.1007/s10620- 015- 3927-y.
[25] Weiske J,Huber O. The histidine triad protein Hint1 triggers apoptosis independent of its enzymatic activity [J].J Biol Chem,2006,281(37):27356- 27366.doi:10.1074/jbc.M513452200.
[26] Linde CI,Feng B,Wang JB,et al. Histidine triad nucleotide-binding protein 1(HINT1) regulates Ca(2+) signaling in mouse fibroblasts and neuronal cells via store-operated Ca(2+) entry pathway [J].Am J Physiol Cell Physiol,2013,304(11):C1098- 1104.doi:10.1152/ajpcell.00073.2013.
[27] Scholer J,Ferralli J,Thiry S,et al. The intracellular domain of teneurin- 1 induces the activity of microphthalmia-associated transcription factor(MITF) by binding to transcriptional repressor HINT1 [J].J Biol Chem,2015,290(13):8154- 8165.doi:10.1074/jbc.M114.615922.
[28] Sanchez-Blazquez P,Rodriguez-Munoz M,Bailon C,et al. GPCRs promote the release of zinc ions mediated by nNOS/NO and the redox transducer RGSZ2 protein [J].Antioxid Redox Signal,2012,17(9):1163- 1177.doi:10.1089/ars.2012.4517.
[29] Rodriguez-Munoz M,de la Torre-Madrid E,Sanchez-Blazquez P,et al. NO-released zinc supports the simultaneous binding of Raf- 1 and PKCgamma cysteine-rich domains to HINT1 protein at the mu-opioid receptor [J].Antioxid Redox Signal,2011,14(12):2413- 2425.doi:10.1089/ars.2010.3511.
[30] Rodriguez-Munoz M,de la Torre-Madrid E,Sanchez-Blazquez P,et al. NMDAR-nNOS generated zinc recruits PKCgamma to the HINT1-RGS17 complex bound to the C terminus of Mu-opioid receptors [J].Cell Signal,2008,20(10):1855- 1864.doi:10.1016/j.cellsig.2008.06.015.
[31] Ajit SK,Ramineni S,Edris W,et al. RGSZ1 interacts with protein kinase C interacting protein PKCI- 1 and modulates mu opioid receptor signaling [J].Cell Signal,2007,19(4):723- 730.doi:10.1016/j.cellsig.2006.09.008.
[32] Guang W,Wang H,Su T,et al. Role of mPKCI,a novel mu-opioid receptor interactive protein,in receptor desensitization,phosphorylation,and morphine-induced analgesia [J].Mol Pharmacol,2004,66(5):1285- 1292.doi:10.1124/mol.66.5.
[33] Rodriguez-Munoz M,Sanchez-Blazquez P,Vicente-Sanchez A,et al. The histidine triad nucleotide-binding protein 1 supports mu-opioid receptor-glutamate NMDA receptor cross-regulation [J].Cell Mol Life Sci,2011,68(17):2933- 2949.doi:10.1007/s00018- 010- 0598-x.
[34] Rodriguez-Munoz M,Garzon J. Nitric oxide and zinc-mediated protein assemblies involved in mu opioid receptor signaling [J].Mol Neurobiol,2013,48(3):769- 782.doi:10.1007/s12035- 013- 8465-z.
[35] Garzon J,Rodriguez-Munoz M,Sanchez-Blazquez P. Direct association of Mu-opioid and NMDA glutamate receptors supports their cross-regulation:molecular implications for opioid tolerance[J].Curr Drug Abuse Rev,2012,5(3):199- 226.
[36] Rodriguez-Munoz M,Cortes-Montero E,Pozo-Rodrigalvarez A,et al. The ON:OFF switch,sigma1R-HINT1 protein,controls GPCR-NMDA receptor cross-regulation:implications in neurological disorders [J].Oncotarget,2015,6(34):35458- 35477.doi:10.18632/oncotarget.6064.
[37] Dang YH,Liu P,Ma R,et al. HINT1 is involved in the behavioral abnormalities induced by social isolation rearing [J].Neurosci Lett,2015,607:40- 45.doi:10.1016/j.neulet.2015.08.026.
[38] Baron M. Genetics of schizophrenia and the new millennium:progress and pitfalls [J].Am J Hum Genet,2001,68(2):299- 312.doi:10.1086/318212.
[39] Straub RE,MacLean CJ,O’Neill FA,et al. Support for a possible schizophrenia vulnerability locus in region 5q22- 31 in Irish families [J].Mol Psychiatry,1997,2(2):148- 155.
[40] Nestler EJ,Pena CJ,Kundakovic M,et al. Epigenetic basis of mental illness [J].Neuroscientist,2016,22(5):447- 463.doi:10.1177/1073858415608147.
[41] Vawter MP,Crook JM,Hyde TM,et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia:a preliminary study [J].Schizophr Res,2002,58(1):11- 20.
[42] Vawter MP,Barrett T,Cheadle C,et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia [J].Brain Res Bull,2001,55(5):641- 650.
[43] Vawter MP,Shannon Weickert C,Ferran E,et al. Gene expression of metabolic enzymes and a protease inhibitor in the prefrontal cortex are decreased in schizophrenia [J].Neurochem Res,2004,29(6):1245- 1255.
[44] Chen X,Wang X,Hossain S,et al. Haplotypes spanning SPEC2,PDZ-GEF2 and ACSL6 genes are associated with schizophrenia [J].Hum Mol Genet,2006,15(22):3329- 3342.doi:10.1093/hmg/ddl409.
[45] Varadarajulu J,Schmitt A,Falkai P,et al. Differential expression of HINT1 in schizophrenia brain tissue [J].Eur Arch Psychiatry Clin Neurosci,2012,262(2):167- 172.doi:10.1007/s00406- 011- 0216- 4.
[46] Kurotaki N,Tasaki S,Mishima H,et al. Identification of novel schizophrenia loci by homozygosity mapping using DNA microarray analysis [J].PLoS One,2011,6(5):e20589.doi:10.1371/journal.pone.0020589.
[47] Barbier E,Zapata A,Oh E,et al. Supersensitivity to amphetamine in protein kinase-C interacting protein/HINT1 knockout mice [J].Neuropsychopharmacology,2007,32(8):1774- 1782.doi:10.1038/sj.npp.1301301.
[48] Ross CA,Margolis RL,Reading SA,et al. Neurobiology of schizophrenia [J].Neuron,2006,52(1):139- 153.doi:10.1016/j.neuron.2006.09.015.
[49] van den Buuse M,Garner B,Gogos A,et al. Importance of animal models in schizophrenia research [J].Aust N Z J Psychiatry,2005,39(7):550- 557.doi:10.1111/j.1440- 1614.2005.01626.x.
[50] Skre H. Genetic and clinical aspects of Charcot-Marie-Tooth’s disease [J].Clin Genet,1974,6(2):98- 118.
[51] Vance JM. Hereditary motor and sensory neuropathies [J].J Med Genet,1991,28(1):1- 5.
[52] Tazir M,Bellatache M,Nouioua S,et al. Autosomal recessive Charcot-Marie-Tooth disease:from genes to phenotypes [J].J Peripher Nerv Syst,2013,18(2):113- 129.doi:10.1111/jns5.12026.
[53] Zhao H,Race V,Matthijs G,et al. Exome sequencing reveals HINT1 mutations as a cause of distal hereditary motor neuropathy [J].Eur J Hum Genet,2014,22(6):847- 850.doi:10.1038/ejhg.2013.231.
[54] Baets J,De Jonghe P,and Timmerman V. Recent advances in Charcot-Marie-Tooth disease [J].Curr Opin Neurol,2014,27(5):532- 540.doi:10.1097/WCO.0000000000000131.
[55] Rauchenzauner M,Fruhwirth M,Hecht M,et al. A novel variant in the HINT1 gene in a girl with autosomal recessive axonal neuropathy with neuromyotonia:thorough neurological examination gives the clue [J].Neuropediatrics,2016,47(2):119- 122.doi:10.1055/s- 0035- 1570493.
[56] Zimon M,Baets J,Almeida-Souza L,et al. Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia [J].Nat Genet,2012,44(10):1080- 1083.doi:10.1038/ng.2406.
[57] Maddison P. Neuromyotonia [J].Clin Neurophysiol,2006,117(10):2118- 2127. doi:10.1016/j.clinph.2006.03.008.
[58] Zimon M,Battaloglu E,Parman Y,et al. Unraveling the genetic landscape of autosomal recessive Charcot-Marie-Tooth neuropathies using a homozygosity mapping approach [J].Neurogenetics,2015,16(1):33- 42.doi:10.1007/s10048- 014- 0422- 0.
[59] Seburn KL,Morelli KH,Jordanova A,et al. Lack of neuropathy-related phenotypes in hint1 knockout mice [J].J Neuropathol Exp Neurol,2014,73(7):693- 701.doi:10.1097/nen.0000000000000085.
[60] Horga A,Cottenie E,Tomaselli PJ,et al. Absence of HINT1 mutations in a UK and Spanish cohort of patients with inherited neuropathies [J].J Neurol,2015,262(8):1984- 1986.doi:10.1007/s00415- 015- 7851-z.
[61] Jerath NU,Shy ME,Grider T,et al. A case of neuromyotonia and axonal motor neuropathy:A report of a HINT1 mutation in the United States [J].Muscle Nerve,2015,52(6):1110- 1113.doi:10.1002/mus.24774.
[62] Lassuthova P,Brozkova DS,Krutova M,et al. Mutations in HINT1 are one of the most frequent causes of hereditary neuropathy among Czech patients and neuromyotonia is rather an underdiagnosed symptom [J].Neurogenetics,2015,16(1):43- 54.doi:10.1007/s10048- 014- 0427- 8.
[63] Elashoff M,Higgs BW,Yolken RH,et al. Meta-analysis of 12 genomic studies in bipolar disorder [J].J Mol Neurosci,2007,31(3):221- 243.
[64] Barbier E,Wang JB. Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level [J].BMC Neurosci,2009,10:132.doi:10.1186/1471- 2202- 10- 132.
[65] Martins-de-Souza D,Guest PC,Harris LW,et al. Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients [J].Transl Psychiatry,2012,2:e87.doi:10.1038/tp.2012.13.
[66] Ge L,Zhu MM,Yang JY,et al. Differential proteomic analysis of the anti-depressive effects of oleamide in a rat chronic mild stress model of depression [J].Pharmacol Biochem Behav,2015,131:77- 86.doi:10.1016/j.pbb. 2015.01.017.
[67] Varadarajulu J,Lebar M,Krishnamoorthy G,et al. Increased anxiety-related behaviour in Hint1 knockout mice [J].Behav Brain Res,2011,220(2):305- 311. doi:10.1016/j.bbr.2011.02.012.
[68] Jackson KJ,Wang JB,Barbier E,et al. Acute behavioral effects of nicotine in male and female HINT1 knockout mice [J].Genes Brain Behav,2012,11(8):993- 1000.doi:10.1111/j.1601- 183X.2012.00827.x.
[69] Liu F,Ma J,Liu P,et al. Hint1 gene deficiency enhances the supraspinal nociceptive sensitivity in mice [J].Brain Behav,2016,6(8):e00496.doi:10.1002/brb3.496.
[70] Vicente-Sanchez A,Sanchez-Blazquez P,Rodriguez-Munoz M,et al. HINT1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate NMDA receptor activity [J].Mol Brain,2013,6:42.doi:10.1186/1756- 6606- 6- 42.
[71] Sanchez-Blazquez P,Rodriguez-Munoz M,Berrocoso E,et al. The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain [J].Eur J Pharmacol,2013,716(1- 3):94- 105.doi:10.1016/j.ejphar.2013.01.066.
[72] Garzon J,Herrero-Labrador R,Rodriguez-Munoz M,et al. HINT1 protein:a new therapeutic target to enhance opioid antinociception and block mechanical allodynia [J].Neuropharmacology,2015,89:412- 423.doi:10.1016/j. neuropharm.2014.10.022.
[73] Klepstad P,Fladvad T,Skorpen F,et al. Influence from genetic variability on opioid use for cancer pain:a European genetic association study of 2294 cancer pain patients [J].Pain,2011,152(5):1139- 1145.doi:10.1016/j.pain.2011.01.040.
[74] Jackson KJ,Chen Q,Chen J,et al. Association of the histidine-triad nucleotide-binding protein- 1(HINT1) gene variants with nicotine dependence [J].Pharmacogenomics J,2011,11(4):251- 257.doi:10.1038/tpj.2010.41.
[75] Fang J,Wang X,He B. Association between common genetic variants in the opioid pathway and smoking behaviors in Chinese men [J].Behav Brain Funct,2014,10:2.doi:10.1186/1744- 9081- 10- 2.
[76] Ray R,Jepson C,Wileyto EP,et al. Genetic variation in mu-opioid-receptor-interacting proteins and smoking cessation in a nicotine replacement therapy trial [J].Nicotine Tob Res,2007,9(11):1237- 1241.doi:10.1080/14622200701648367.
[77] Jackson KJ,Wang JB,Barbier E,et al. The histidine triad nucleotide binding 1 protein is involved in nicotine reward and physical nicotine withdrawal in mice [J].Neurosci Lett,2013,550:129- 133.doi:10.1016/j.neulet. 2013.06.027.
[78] Romanova EV,Lee JE,Kelleher NL,et al. Mass spectrometry screening reveals peptides modulated differentially in the medial prefrontal cortex of rats with disparate initial sensitivity to cocaine [J].Aaps J,2010,12(3):443- 454.doi:10.1208/s12248- 010- 9204- 2.
[79] Sabeti J,Gerhardt GA,Zahniser NR. Individual differences in cocaine-induced locomotor sensitization in low and high cocaine locomotor-responding rats are associated with differential inhibition of dopamine clearance in nucleus accumbens [J].J Pharmacol Exp Ther,2003,305(1):180- 190.doi:10.1124/jpet.102.047258.
[80] Klein DA,Gulley JM. Reduced sensitivity to the locomotor-stimulant effects of cocaine is associated with increased sensitivity to its discriminative stimulus properties [J].Behav Pharmacol,2009,20(1):67- 77.doi:10.1097/FBP.0b013e3283242fdd.
[81] Allen RM,Everett CV,Nelson AM,et al. Low and high locomotor responsiveness to cocaine predicts intravenous cocaine conditioned place preference in male Sprague-Dawley rats [J].Pharmacol Biochem Behav,2007,86(1):37- 44.doi:10.1016/j.pbb.2006.12.005.
[82] Mandt BH,Schenk S,Zahniser NR,et al. Individual differences in cocaine-induced locomotor activity in male Sprague-Dawley rats and their acquisition of and motivation to self-administer cocaine [J].Psychopharmacology(Berl),2008,201(2):195- 202.doi:10.1007/s00213- 008- 1265-x.
[83] Abdel Rassoul R,Alves S,Pantesco V,et al. Distinct transcriptome expression of the temporal cortex of the primate Microcebus murinus during brain aging versus Alzheimer’s disease-like pathology [J].PLoS One,2010,5(9).doi:10.1371/journal.pone.0012770.
[84] Weitzdoerfer R,Stolzlechner D,Dierssen M,et al. Reduction of nucleoside diphosphate kinase B,Rab GDP-dissociation inhibitor beta and histidine triad nucleotide-binding protein in fetal Down syndrome brain [J].J Neural Transm Suppl,2001(61):347- 359.
[85] Krakowiak A,Pawlowska R,Kocon-Rebowska B,et al. Interactions of cellular histidine triad nucleotide binding protein 1 with nucleosides 5’- O-monophosphorothioate and their derivatives-Implication for desulfuration process in the cell [J].Biochim Biophys Acta,2014,1840(12):3357- 3366.doi:10.1016/j.bbagen.2014.08.016.
[86] di Masi A,Ascenzi P. H2S:a“double face”molecule in health and disease [J].Biofactors,2013,39(2):186- 196.doi:10.1002/biof.1061.
[87] Paul BD,Snyder SH. H2S:A novel gasotransmitter that signals by sulfhydration [J].Trends Biochem Sci,2015,40(11):687- 700.doi:10.1016/j.tibs.2015.08.007.
[88] Rodriguez-Muoz M,Snchez-Blzquez P,Merlos M,et al. Endocannabinoid control of glutamate NMDA receptors:the therapeutic potential and consequences of dysfunction [J].Oncotarget,2016,7(34):55840-55862.doi:10.18632/oncotarget.10095.
[89] Sanchez-Blazquez P,Rodriguez-Munoz M,Garzon J. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction:implications in psychosis and schizophrenia [J].Front Pharmacol,2014,4:169.doi:10.3389/fphar.2013.00169.
[90] Howes O,McCutcheon R,Stone J. Glutamate and dopamine in schizophrenia:an update for the 21st century [J].J Psy-chopharmacol,2015,29(2):97- 115.doi:10.1177/0269881114563634.
EmergingRolesofHistidineTriadNucleotideBindingProtein1inNeuropsychiatricDiseases
DANG Yonghui1,LIU Zhongwei2,LIU Peng1,WANG Jiabei3
1Key Laboratory of the Health Ministry for Forensic Medicine,Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry,College of Medicine & Forensics,Xi’an Jiaotong University Health Science Center,Xi’an 710061,China2Department of Cardiology,Shaanxi Provincial People’s Hospital,Xi’an 710061,China3Department of Pharmaceutical Sciences,School of Pharmacy,University of Maryland,Baltimore MD 21201,USA
DANG Yonghui Tel:029- 82655237,E-mail:psydyh@mail.xjtu.edu.cn
The histidine triad nucleotide binding protein1(HINT1),which belongs to the histidine triad(HIT) enzyme superfamily,exerts its enzymic activities as hydrolase or transferase. Its physiological functions are still unclear. HINT1 protein is expressed in various tissues and plays an important role in transcription and signal transduction. Earlier studies have identified HINT1 as a haplo-insufficient tumor suppressor. Other evidences indicate that HINT1 is involved in a wide variety of physiological processes,some of which are irrelevant with its basic enzymic activities. Investigations recently suggest that HINT1 is closely related to many peripheral and central nervous system diseases,and plays a vital role in some of neuropsychiatric diseases such as inherited peripheral neuropathies,schizophrenia,mood disorder,drug addiction,and Down’s syndrome. In this review,the role of HINT1 in above-mentioned neuropsychiatric disorders was summarised,and the research findings of HINT1 in each of the above diseases were summarized and analyzed,in order to provide some guidance for further research on this protein.
histidine triad nucleotide binding protein 1;neuropathology
国家自然科学基金(81171262、81771435)和陕西省自然科学基础研究计划面上项目(2016JM8078)Supported by the National Natural Sciences Foundation of China(81171262,81771435) and the Natural Science Basic Research Plan in Shaanxi Province of China(2016JM8078)
党永辉 电话:029- 82655237,电子邮件:psydyh@mail.xjtu.edu.cn
R394.3
A
1000- 503X(2017)05- 0705- 10
10.3881/j.issn.1000- 503X.2017.05.018
ActaAcadMedSin,2017,39(5):705-714
2016- 08- 10)