李兴安 牛庆生 薛运波
(吉林省养蜂科学研究所,吉林132108)
西方蜜蜂的线粒体DNA细胞色素氧化酶亚基-Ⅰ~细胞色素氧化酶亚基-ⅠⅠ富含A+T非编码区单倍型类群(续)
李兴安 牛庆生 薛运波
(吉林省养蜂科学研究所,吉林132108)
续《中国蜂业》2016年第10期
因此,根据A.m.的COI-COII NC单倍型类群分析的原始数据,A.m.非洲世系为DraI RFLP谱图表征的3个COI-COII NC单倍型类群(表1)。
在A.m.进化过程中,阿尔卑斯山以北直至乌拉尔山的宽阔地域及其比邻的突尼斯、摩洛哥、撒哈拉沙漠近地中海地带等地是A.m.的一个自然分布区[5,8]。昆虫形态变异分析(和昆虫系统地理学分析),将分布于那里的欧洲黑蜂等A.m.地理亚种(及其相关生态类型)概括为A.m.西部欧洲世系[25]。基于DraI RFLP分析,本文将A.m.西部欧洲世系样本的90种DraI RFLP谱图归纳为1种COI-COII NC单倍型类群,即P、Q元件组成类群[19,21-24,26,27,30,32-35]。这个单倍型类群具有1个P元件和5个不同串联重复频率Q元件,至少包括PQ、PQQ、PQQQ、PQQQQ以及PQQQQQ 5种mtDNA单倍型类型[19,22-24,26,27,30,32-34,36]。因此,根据A.m.的COI-COII NC单倍型类群分析原始数据,A.m.西部欧洲世系为RFLP谱图表征的1个COI-COII NC单倍型类群(表1)。
在A.m.进化过程中,阿尔卑斯山南麓、地中海东北部沿岸以及喀尔巴阡山之间的广袤地域是A.m.的另外一个自然分布区[5,8]。昆虫形态变异分析(和昆虫系统地理学分析),将分布于那里的意大利蜂、卡呢鄂拉蜂等地理亚种(及其相关生态类型)概括为A.m.东部欧洲世系[25]。基于SNP分析,本文将A.m.东部欧洲世系样本的25种SNP谱图归纳为1种COI-COII NC单倍型类群,即Q元件组成类群[23,24,37-39]。这个单倍型类群仅为Q元件1种mtDNA单倍型类型。因此,根据A.m.的COICOII NC单倍型类群分析的原始数据,A.m.东部欧洲世系为SNP谱图表征的1个COI-COII NC单倍型类群(表1)。
西部亚洲或(和)中部亚洲是A.m.的第四个自然分布区[5,8]。昆虫形态变异分析(和昆虫系统地理学分析),将分布于那里的高加索蜂等A.m.地理亚种(及其相关生态类型)概括为A.m.亚洲世系[25]。基于DraI RFLP分析,本文将A.m.亚洲世系样本的29种DraI RFLP谱图归纳为3种COI-COII NC单倍型类群,即P0、Q元件组成类群,P0'、Q元件组成类群以及P1'、Q元件组成类群[22,35,40,41]。其中,P0、Q元件组成类群具有1个P0元件和3个不同串联重复频率Q元件,至少包括P0Q、P0QQ以及P0QQQ 3种mtDNA单倍型类型;P0'、Q元件组成类群具有1个P0'元件和1个Q元件,仅为P0'Q 1种mtDNA单倍型类型[22];P1'、Q元件组成类群具有1个P1'元件和1个Q元件,仅为P1'Q 1种mtDNA单倍型类型[42]。因此,根据A.m.的COI-COII NC单倍型类群分析的数据,A.m.亚洲世系为DraI RFLP谱图表征的3个COI-COII NC单倍型类群(表1)。
通过上述分析,本文依据A.m.地理亚种的COICOII NC多态性规律,将A.m.归纳为8个COI-NCCOII单倍型类群。A.m.地理亚种的COI-COII NC单倍型类群为西方蜜蜂分类学研究提供了新思路。
在同领域的相关研究中,相关文献既缺乏A.m.非洲世系、A.m.西部欧洲世系以及A.m.东部欧洲世系的SNP分析数据,又缺乏A.m.亚洲世系的DraI RFLP分析数据(表1)。其原因可能是低通量分析技术限制了相关研究在研究期间获得大量COI-COII NC数据,即低分辨率琼脂糖(和聚丙烯酰胺)凝胶电泳技术和低通量第一代DNA序列测定技术不适合进行大量A.m.地理亚种样品的COI-COII NC多态性分析。然而,在一些其它生物样品的mtDNA单倍型分析中,高分辨率毛细管DNA电泳技术和高通量第二代DNA序列测定技术,能够克服上述研究的技术瓶颈[9]。鉴于高分辨率、高通量技术具有方法学优势,A.m.的mtDNA多态性分析最终将在分子水平建立A.m.地理亚种的COI-COII NC单倍型数据库,COI-COII NC单倍型数据库将更透彻地反映A.m.的COI-NC-COII多态性规律。
表1 A.m.的COI-COII NC单倍型类群分析统计表
表1 A.m.的COI-COII NC单倍型类群分析统计表(续)
表1 A.m.的COI-COII NC单倍型类群分析统计表(续)
在同领域的相关研究中,除了美洲A.m.的COICOII NC多态性分析之外,较少文献系统地报道其它非自然分布区A.m.的研究进展。美洲A.m.包括17世纪初期引入的欧洲黑蜂等A.m.西部欧洲世系后代,19世纪引入的意大利蜂、卡呢鄂拉蜂等A.m.东部欧洲世系后代和高加索蜂等A.m.亚洲世系后代,以及20世纪中期引入的非洲蜂等A.m.非洲世系后代。本文将美洲A.m.非洲世系的20种DraI RFLP谱图归纳为P0、Q元件组成类群的3种mtDNA单倍型类型(即P0Q、P0QQ和P0QQQ),将美洲A.m.西部欧洲世系的7种DraI RFLP谱图归纳为P、Q元件组成类群的3种mtDNA单倍型类型(即PQ、PQQ和PQQQ),美洲A.m.东部欧洲世系的2种SNP谱图归纳为Q元件组成类群的1种mtDNA单倍型类型(即Q),将美洲A.m.亚洲世系的4种DraI RFLP谱图归纳为P0、Q元件组成类群的3种mtDNA单倍型类型(即P0Q、P0QQ和P0QQQ)[29]。美洲A. m.的COI-COII NC多态性分析将为其它非自然分布区A.m.的同类型研究提供可靠的文献依据。
在同领域的相关研究中,除了东方蜜蜂、沙巴蜂、绿努蜂以及苏拉威西蜂等A.m.近缘物种的COI-COII NC多态性分析外,较少文献报道大蜜蜂等蜜蜂属其它物种的同类型研究。尽管如此,这些A.m.近缘物种的COI-COII NC多态性分析还是揭示了这样一个事实:相对于A.m.,它们具有短的COI-COII NC,其长度范围是30~100碱基。这或许为我们透露出这样一点信息:蜜蜂属生物的COI-NC-COII多态性与蜜蜂属生物的物种多样性之间是否存在某种关系。而且,鉴于A.m.的COI-COII NC多态性分析已积累了丰富的知识和成熟的技术,这些蜜蜂属其它物种的同类型研究有了可借鉴的知识储备和技术手段。因此,在蜜蜂属范围内,有必要系统研究每个物种的COI-COII NC单倍型类群。
[1]Williams DL.A veterinary approach to the European honey bee (Apis mellifera L.)[J].Veterinary journal,2000,160(1)∶61-73.
[2]Kremen C,Williams NM,Thorp RW.Crop pollination from native bees at risk from agricultural intensification[J].Proceedings of the National Academy of Sciences of the United States of America, 2002,99(26)∶16812-16816.
[3]Le Conte Y and Navajas M.Climate change∶impact on honeybee populations and diseases[J].Rev.sci.tech.Off.int.Epiz,2008, 27(2)∶499-510.
[4]Rogers SR,Tarpy DR,Burrack HJ.Bee species diversity enhances productivity and stability in a perennial crop[J].PLoS One, 2014,9(5)∶e97307.
[5]Whitfield C W,Behura S K,Berlocher S H,et al.Thrice out of Africa∶Ancient and recent expansions of the honey bee,Apis mellifera[J].Science,2006,314∶642-645.
[6]Chen C,Liu Z,Pan Q,et al.Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n.ssp[J].Mol Biol Evol,2016,33(5)∶1337~1348.
[7]Ruttner F,Tassencourt L,Louveaux J.Biometrical statistical analysis of the geographic variability of Apis mellifera L.[J].Apidologie,1978,9∶363-381.
[8]Han F,Wallberg A,Webster MT.From where did the Western honeybee(Apis mellifera L.)originate[J]Ecology and Evolution, 2012,2(8)∶1949-1957.
[9]Meixner MD,Pinto MA,Bouga M,et al.Standard methods for characterising subspecies and ecotypes[J].Journal of Apicultural Research,2013,52(4)∶1-25.
[10]Corlett RT.Flower visitors and pollination in the Oriental(Indomalayan)Region[J].B Biological reviews of the Cambridge Philosophical Society,2004,79(3)∶497-532.
[11]Bouga M,Alaux C,Bienkowska M,et al.A review of methods for discrimination of honey bee populations as applied to European beekeeping[J].Journal of Apicultural Research,2011,50(1)∶51-84.
[12]De la R′ua P,Jaff′e R,Dall'Olio R,et al.Biodiversity,conser-vation and current threats to European honeybees[J].Apidologie, 2009,40∶263-284.
[13]vanEngelsdorp D,Meixner MD.A historical review of managed honey bee populations in Europe and the United States and factors that may affect them[J].Journal of Invertebrate Pathology,2010, 103∶580-595.
[14]Roxane M.Magnus,Amber D.Tripodi,Allen L.Szalanski.Mitochondrial DNA Diversity of Honey Bees(Apis mellifera L.)from Unmanaged Colonies and Swarms in the United States[J].Biochemical Genetics,2014,52(5-6)∶245-257.
[15]Cornuet J-M,Garnery L,Solignac M.Putative origin and function of the intergenic region between COI and COII of Apis mellifera L.Mitochondrial DNA[J].Genetics,1991,1128∶393-403.
[16]Crozier RH,Crozier YC,Mackinlay AG.The COI-COII region of honeybee mitochondrial DNA∶Evidence for variation in insect mitochondrial evolutionary rates[J].Molecular Biology and Evolution,1989∶6(4)∶399-411.
[17]Davolos D1,Maclean N.Mitochondrial COI-NC-COII sequences in talitrid amphipods(Crustacea)[J].Heredity(Edinb), 2005,94(1)∶81-86.
[18]Cann RL,Wilson AC.Length mutations in human mitochondrial DNA[J].Genetics,1983,104∶699-711.
[19]Rortais A,Arnoid G,Alburaki M,et al.Review of the DraI test for the conservation of the black honeybee(Apis mellifera mellifera) [J].Conservation Genet Resour,2011,3∶383-391.
[20]Crozier RH,Crozier YC.The mitochondrial genome of the honeybee Apis mellifera L.∶complete sequence and genome organization[J].Genetics,1993,133∶97-117.
[21]Franck P,Garnery L,Loiseau A,et al.Genetic diversity of the honeybee in Africa∶microsatellite and mitochondrial data[J]. Heredity,2001,420-430.
[22]Franck P,Garnery L,Solignac M,et al.Molecular confirmation of a fourth lineage in honeybees from the Near East[J].Apidologie, 2000,31∶167-180.
[23]Franck P,Garnery L,Celebrano G,et al.Hybrid origins of honeybees from Italy(Apis mellifera ligustica)and Sicily(Apis mellifera sicula)[J].Molecular Ecology,2000,9∶907-921.
[24]Nedic N,Stanisavljvic L,Mladenovic M,et al.Molecular characterization of the honeybee Apis mellifera carnica in Serbia[J]. Archives of Biological Science Belgrade,2009,61(4)∶587-598.
[25]Arias MC,Sheppard WS.Molecular phylogenetics of honey bee subspecies(Apis mellifera L.)inferred from Mitochondrial DNA sequence[J].Molecular Phylogenetics and Evolution,1996,5∶3557-3566.
[26]Garnery L,Franck P,Baudry E,et al.Genetic diversity of the west European honey bee(Apis mellifera mellifera and Apis mellifera iberica)II.Microsatellite loci[J].Molecular Biology and Evolution,1998,30,S49-S74.
[27]Franck P,Garnery L,Solignac M,et al.The origin of west European subspecies of honeybees(Apis mellifera L.)∶New insight from microsatellite and mitochondrial data[J].Evolution,1998,52 (4)∶1119-1134.
[28]Eelarua P,Galian J,Serrano J,et al.Genetic structure and distinctness of Apis mellifera L.population from the Canary Islands[J]. Molecular Ecology,2001,10∶1733-1742.
[29]Collet T,Ferreira KM,Arias MC,et al.Genetic structure of Africanized honeybee populations(Apis mellifera L.)from Brazil and Uruguay viewed through mitochondrial DNA COI-COII patterns [J].Heredity(Edinb),2006,97(5)∶329-335.
[30]Miguel I,Iriondo M,Garnery L,et al.Gene flow within the M evolutionary lineage of Apis mellifera L.∶role of the Pyrenees,isolation by distance and post-glacial recolonization routes in the Western Europe[J].Apidologie,2007,38∶141-155.
[31]El-Niweiri MAA,Moritz RFA.Mitohondrial discrimination of honeybees(Apis mellifera L.)of Sudan[J].Apidologie,2008,39∶566-573.
[32]Garnery L,Franck P,Baudry E,et al.Genetic diversity of the west European honeybee(Apis mellifera mellifera and Apis mellifera iberica).I.Mitochondrial DNA[J].Molecular Biology and Evolution,1998,30(Suppl.1)∶S31-S47.
[33]De la Rua P,Jimenez Y,Galian J,et al.Evaluation of the biodiversity of honey bee(Apis mellifera L.)populations from Eastern Spain[J].Journal of Apicultural Research,2004,43∶162-166.
[34]Jensen AB,Palmer KA,Boomsma JJ,et al.Varing degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee,Apis mellifera mellifera,in northwest Europe[J]. Molecular Biology and Evolution,2005,14∶93-106.
[35]Alburaki M,Bertrand B,Legout H,et al.A fifth major genetic group among honeybees revealed in Syria[J].BMC Genetics,2013, 14∶117.
[36]Garnery L,Mosshine EH,Cornuet J-M.Mitochondrial DNA variation in Moroccan and Spanish honey bee populations[J]. Molecular ecology,1995,4∶465-471.
[37]Kandemir L,Kence M,Sheppard WS,et al.Mitochondrial DNA variation in honeybee(Apis mellifera L.)populations from Turkey[J].Journal of Apicultural Research,2006,45∶33-38.
[38]Solorzano CD,Szalanski AL,Kence M,et al.Phylogeography and population genetics of honeybees(Apis mellifera L.)from Turkey based on COI-COII sequence data[J].Sociobiology,2009, 53(2)∶237-246.
[39]Ozdil F,Yildiz MA,Hall HG.Molecular characterization of Turkish honeybee populations(Apis mellifera L.)inferred from mitochondrial DNA RFLP and sequence results[J].Apidologie,2009, 40(5):570-576.
[40]Garnery L,Solignac M,Celebrano G,et al.A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L.[J].Experimentia,1993,49∶1016-1021.
[41]Alburaki M,Moulin S,Legout H,et al.Mitochondrial structure of Eastern honeybee populations from Syria,Lebanon and Iraq[J]. Apidologie,2011,42∶628-641.
[42]Palmer MR,Smith DR,Kaftanoglu O.Turkish honeybees∶Genetic Variation and Evidence for a fourth lineage of Apis mellifera L.mtDNA[J].The Journal of Heredity,2009,91(1)∶42-46.
吉林省科技发展计划项目(20130101094JC;20140101132JC)、国家蜂产业技术体系(CARS-45-KXJ2;CA2S-45-SYZ4)
李兴安(1965-),男,研究员,E-mail∶Lxingan@sina.com