徐小军
新课标对学生的学习能力和应用意识有更高要求,高中数学教学需要从单纯的知识传授向培养学生的学习能力和应用意识方面转变.高中数学应用题的最值问题与学生的日常生活比较贴近,应用题的最值问题逐渐成为高中数学教学的重点内容之一.下面就高中数学应用题的最值问题教学进行分析.
一、应用题的最值问题教学分析
1.应用题的最值问题解题思路.(1)审题.应用题文字背景多,信息量大,且包含许多隐藏信息.学生首先要阅读文字,理解题目的含义和所涉及的条件、结论,掌握各个信息和数字之间的内在联系.在教学实践中,教师可以通过以下两个方面培养学生的审题意识和能力.一是扩展学生的阅读量,阅读内容不仅局限于教材,还应向学生的内涵扩展,提高学生对实际问题的理解能力,增强学生将文字转化为数学信息的能力;二是夯实基础.应用题重点考查学生的基础能力,如一次函数模型、指数函数模型等数学模型.学生只有具备扎实的数学基础,才能熟练运用数学基础知识解决实际问题.(2)数学建模.从本质上分析,应用题的最值问题考查学生利用文字信息构建数学模型的能力,学生能否利用问题信息构建数学模型也是成功解题的关键.数学模型是概念、符号、公式的结合,解决最值问题时要求学生明确各个数值的内在关系,再结合已知的数学模型,选择与问题、数值关系相吻合的数学模型.新课改后,数学知识主要以实际问题方式呈现,教师应重视提高学生的数学建模能力.(3)求解.构建数学模型后,求解是解决问题的重要环节.在解题过程中,教师应引导学生从数字的实际意义出发,通过数的变形和转化简化解题过程.(4)还原.求解获得应用题的最值后,应将结论还原到实际问题中,达到解决实际问题的目的.
2.应用题的最值问题的常见模型及建模.高中数学应用题的最值问题的常见模型比较多样,如函数、不等式、几何、数列等模块知识可以用于创设应用题的最值问题.在教学中,教师应根据问题考查的侧重点,构建恰当的数学模型.如中奖率、命中率、工程随机生产等应用题的最值问题,可以构建概率模型,资源分配、优选等应用题的最值问题,可以构建不等式模型或线性规划模型求解.对于最优化等问题,可以构建几何模型求解.
二、案例分析
高中数学应用题的最值问题主要考查函数知识,所涉及函数应用题的题型丰富,解法灵活多变.在教学中,教师应引导学生深入分析应用题的文字信息,将文字信息“翻译”为数学条件或数学信息,再根据数学信息建立函数模型.其中“方案最优化”为常见考查题型,“方案最优化”问题的解题关键在于建立目标函数,再根据函数的单调性、不等式、三角函数的界性和求导的特性求解.
1.应用题的最值问题.某公司花费2160万元购买了一块地皮,该公司预期在该地皮上建造一栋建筑物,建筑物的楼层不低于10层,每层建筑的面积为2000m2.根据专家计算,如果建筑物共建造x层,则每平方米的楼层的平均综合建造费用为(560+48x)元,为最大限度降低建造费用,该建筑共建造多少层最合适(平均综合建造费用=平均建筑费用+平均购地费用;平均购地费用=购地总费用÷建筑总面积)?
总之,高中数学应用题的最值问题是对学生的文字信息转化能力、建模能力的考查,教师应重点提高学生的审题能力,夯实学生的数学基础知识,提高学生将文字转化为数学条件的能力.同时,最值问题对学生的思维能力也有更高的要求,教师应重视培养学生的数学思维,提高学生的推演能力水平,建立应用题文字信息与数学函数之间的内在联系,提高解决应用题的最值问题的水平,培养学生解决实际问题的能力.