韩瑨,吴正钧,,鄢明辉,高彩霞,吴申懋(.乳业生物技术国家重点实验室,上海0046;.上海乳业生物工程技术研究中心,上海0046;.光明乳业研究院光明乳业股份有限公司,上海0046)
不溶性葡聚糖的研究进展
韩瑨1,吴正钧1,2,鄢明辉2,高彩霞3,吴申懋3
(1.乳业生物技术国家重点实验室,上海200436;2.上海乳业生物工程技术研究中心,上海200436;3.光明乳业研究院光明乳业股份有限公司,上海200436)
不溶性葡聚糖是一类不溶于水或碱溶液的葡萄糖多聚物,主要由微生物产生的葡萄糖基转移酶催化蔗糖合成而来,其主链通常由葡萄糖以α-(1,3)、α-(1,6)、β-(1,3)或β-(1,4)糖苷键键合而成。本文从来源、功能与应用、调控的角度总结了不溶性葡聚糖的研究进展,并对其发展趋势进行了展望。
不溶性葡聚糖;来源;功能;应用;调控
不溶性葡聚糖(insoluble glucan,简称IG)是一类不溶于特定溶剂(通常为水溶液或碱溶液)的葡萄糖多聚物,这种碳水化合物不但来源广泛,在植物、真菌以及细菌的代谢产物中均有报道,而且种类繁多,根据分子构型的不同可分为:α-葡聚糖(α-glucan)[1]和β-葡聚糖(β-glucan)[2],其葡萄糖残基大多以α-(1,3)[3]、α-(1,6)[4]、β-(1,3)[5]或β-(1,4)[6]糖苷键连接而成,此外,根据溶解特性差异还有水不溶性葡聚糖(water-insoluble glucan,简称WIG)[7]和碱不溶性葡聚糖(alkaliinsoluble glucan,简称AIG)[8]之分。如细菌来源的IG主要来自糖苷水解酶第70家族(glycoside-hydrolase family 70)中的葡萄糖基转移酶(glucosyltransferase,简称GTF)的合成作用,这些GTF主要存在于胞外生境中[9]或被锚定于胞壁上[10],负责内源性前体物质(如短链葡聚糖)[11]和终产物(IG)[12]的合成。目前报道较多的IG有dextran、curdlan和cellulose 3种,其多糖结构如图1所示,与可溶性葡聚糖相比,IG因其狭隘的应用范围而少人问津,因此,本文将从来源,功能以及合成调控角度对IG的研究进展进行概述。
不溶性葡聚糖的部分来源如表1所示,不难看出,植物中的IG主要存在于谷物,且均为β-构型的WIG,研究表明,谷物中WIG的含量取决于谷物的品系,如Cyril和PS-100品系燕麦的WIG含量可达26.7%~28.2%,小米(Panicum miliaceum L.)、荞麦(Fagopyrum)和苋属植物(Amaranthus sp.L.)次之,为20%左右[2]。
与植物来源的IG相比,真菌IG的构型、溶解特性以及分布范围更具多样性。以霉菌为例,来自不同种霉菌的IG往往构型和溶解特性各异,如文氏曲霉(As-pergillus wentii)产水不溶性(1→3)-α-glucan[13],樟疫霉(Phytophthora cinnamo)和枝顶孢雷(Acremonium diospyri)产的(1→3)-β-glucan分别是水不溶性和碱不溶性的[14-15],而木霉(Trichoderma longibrachiatum)的WIG属于(1→4)-β-glucan[16]。除霉菌以外,茯苓、虎奶菇、酿酒酵母等一些可食用真菌也是真菌类IG的重
要来源[3,17-18]。
图1 3种典型的不溶性葡聚糖:(A)右旋糖苷、(B)热凝胶多糖、(C)纤维素Fig.1 Three typical insoluble-glucan:(A)dextran,(B)curdlan,(C)cellulose
表1 不溶性葡聚糖的部分来源Table 1 Partial sources of insoluble glucan
有别于植物和真菌IG,细菌类IG的构型极为丰富,基本涵盖了所有已知的构型,但都是水不溶性多糖。在这些产IG的细菌中,链球菌属细菌,尤其是变异链球菌(Streptococcus mutans),因其代谢产物水不溶性α-glucan的致龋性而成为最早引起人们关注的对象[19],随着IG研究的不断深入,明串珠菌(Leuconostoc)[20]、芽孢杆菌(Bacillus)[5]等也先后加入了IG产生菌的行列,进而成为研究的新热点。
2.1免疫调控作用
目前有关IG功能与应用的研究主要集中于免疫调控作用。Cassone等发现,以不同碳源培养获得的白念珠菌(Candida Albicans)菌株,其细胞壁上可溶性和不溶性组分(β-glucan)的比例有差异,并且,胞壁中不溶性组分比例高的细胞具有显著的抗肿瘤作用,表明不溶性β-glucan是酵母细胞壁上唯一一种具备抗肿瘤活性的组分[30]。SUZUKI等的动物实验结果表明,摄入Zymocel(一种酵母来源的IG)可引发炎症反应,进而通过活化细胞因子网络和巨噬细胞来激活免疫系统[31]。Graubaum等通过一项关于β-glucan对感冒的发生率和症状影响的临床研究发现,每天摄入β-glucan不但可以显著降低感冒的发生率(P=0.019),而且能明显缓解咽痛、吞咽困难、声音嘶哑、咳嗽、流涕等一些典型的感冒症状[32]。从枝顶孢霉(Acremonium diospyri)中可提取到AIG和碱溶性葡聚糖(alkali soluble glucan,简称ASG)两类葡聚糖,当主要组分是(1→3)-β-glucan的WIG作用于印度明对虾(Fenneropenaeus indicus)时,可增加酚氧化酶原(prophenoloxidase)和活性氧中间体(reactive oxygen intermediate)的活性,而以(1→3)-α-glucan为主的ASG却不具备同样的免疫刺激活性,因此Anas等认为这种免疫刺激的差异主要是由受试样品(AIG和ASG)中(1→3)-β-glucan含量不同引起的[15]。Maity等通过对两株真菌(Pleurotus florida 和Calocybe indica var.APK2)原生质体的融合获得了杂交蘑菇PCH9FB,其杂交体中提取的水不溶性βglucan对巨噬细胞、脾细胞和胸腺细胞均有显著的活化效果[33]。
2.2其他功能与应用
除了上述的增强免疫作用外,IG在其他方面也有一定的应用价值。WOOD等利用酶反应基本规律,将燕麦和大麦中提取到的不溶性β-glucan作为底物来测定对应酶(β-glucanase)的活性,建立了一种商业酶制剂中β-glucanase活力的检测方法[34]。研究人员发现,当IG每天以小鼠体重0.2%的的剂量通过口服途径作用于高脂膳食诱导的肥胖小鼠,6周后受试对象的体重,粪便pH值,血清中胆固醇、甘油三酯和脂蛋白的含量均有显著的降低,同时,肠道内的乳杆菌数量与对照组相比,也得到明显的恢复,这表明IG具有减肥和整肠的双重特性[35]。通过2-环氧丙烷(Epichlorohydrin)处理IG的方法,Vaidya等成功地将IG中的自由羟基转化为能与酶分子中各种基团形成共价键的活性环氧基团,环氧化的IG被用作基质来固定皱褶念珠菌脂肪酶(Candida rugosa lipase)时,终产物的酶活与得率分别为8 136.7 U/g和59.6%,并且固定后的酶活相当稳定,4℃保藏条件下的半衰期可达285 d[36]。
3.1抑制IG的合成
传统药用植物是自然界中IG合成抑制剂的重要来源之一,例如民间专治龋齿和牙周疾病的中草药细辛(Asarum sieboldii),其水提取物和乙醇提取物均可有效抑制变异链球菌的生长、产酸及合成IG能力,并显著降低菌体的吸附性[37],无独有偶的是,这种抑菌降吸附作用同样被发现于云南木香(Saussurea lappa)的乙醇提取物中[38]。和乌龙茶或者绿茶相比,啤酒花球果花托(hop bract)中的高分子多酚类物质(36 000 Da~40 000 Da)可以更高效地抑制变异链球菌和远缘链球菌中GTF的活性和菌体细胞的粘附作用,但却不影响菌株生长和产酸[39]。除了上述多酚类物质以外,游离脂肪酸(free fatty acid)[40]、酵素(mutastein)[41]、细菌素(nisin)[42]、阿卡波糖(acarbose)[43]、鞣酸(tannic acid)[44]等一些结构相对明确的化合物均可被用于抑制GFT的活性,进而阻遏IG的形成。植物内生菌(链霉菌ST8)的发酵液经乙酸乙酯萃取后得到的提取物在一定浓度范围(0.05 mg/mL~5 mg/mL)内可阻止变异链球菌ATCC25175和104B在玻璃和唾液包被的羟磷灰石表面吸附[45]。对于以蔗糖为底物的IG合成反应而言,木糖基果糖苷(xylosylfructoside)、麦芽糖基果糖苷(maltosylfructoside)、麦芽糖基蔗糖(maltosylsucrose)、黑曲霉糖基葡萄糖(nigerosylglucose)、异麦芽糖(isomaltose)、异麦芽糖基果糖苷(isomaltosylfructoside)等蔗糖的衍生物或结构类似物具有抗IG合成与粘附的功能,而其自身只会被微生物少量地代谢利用,因此可作为抗龋齿的碳源来应用[46]。凭借单克隆抗体的技术手段,Ochiai等从骨髓瘤细胞与脾细胞的杂交细胞分泌物中筛选GTF的单克隆抗体,结果发现,相较于其他抗体对GTF无抑制活性而言,抗体(lgM型免疫球蛋白)29EG的抑制效果可达50%,进一步研究发现,抗体29EG和GTF的结合位点与其他抗体不同,由此可见,抗体对GTF的特异性抑制与酶分子上抗原抗体的结合位点有关[47]。有趣的是,中性或碱性条件下几种特定蛋白(α-casein,albumin)与醛糖(glucose,glyceraldehyde,glycolaldehyde)的美拉德反应产物对负责合成IG的GTF也有特异性抑制的效果,但不影响可溶性葡聚糖合成酶的活性[48]。
3.2减少IG的积累
采用相应的酶对IG进行酶解是减少IG在生物合成后进一步积累的最行之有效的方法之一。Ebisu等发现,胰酪胨培养基经黄质菌属菌株Ek-14发酵后的上清液中,含有一种可特异性内切IG中α-(1→3)糖苷键的水解酶(mutanase),该酶的等电点与分子量分别为pH 8.5和65 000 Da,在pH6.3、42℃的反应条件下的酶解效果最佳,当此酶作用于变异链球菌OMZ 176来源的IG时可释放出多种糖类产物(葡萄糖、异麦芽糖、黑曲霉糖等),从而增强了底物(IG)的可溶性[49],当mutanase浓度达到40 mU/mL时即可使贴壁葡聚糖基本完全解体。一项有关口腔菌以色列放线菌C和黄褐拟杆菌来源的dextranase(EC 3.2.1.11)对变异链球菌IG产量影响的研究指出,浓度为2 mU/mL的酶液可抑制60%IG的形成,浓度为5 mU/mL的酶液可使变异链球菌在玻璃表面吸附的机率降低80%,此外,低浓度酶液对已吸附在玻璃上的变异链球菌也有较强的清除作用(50%~60%)[50]。导致龋齿的链球菌通过合成不溶性的(1→3)-α-glucan和(1→6)-α-glucan来形成牙齿表面生物膜,进而增加菌体在牙齿表面的吸附效果,因此,采用mutanase和dextranase混合作用于可以更有效地控制牙齿表面不溶性葡聚糖生物膜的形成[51]。
3.3促进IG的合成
鉴于早期人们对IG的认知仅限于增加细菌吸附性、形成牙菌斑和造成成龋齿等负面影响,因此有关IG调控的报道几乎都是负向调控研究,而促进IG的合成却极少关注。Mukasa等发现,高浓度的一价或二价阳离子可大幅刺激WIG的生成,其原理为:(1)提高GTF活性。当反应体系中缺失和存在反应前体dextran时,高浓度阳离子可分别将GTF活性提高1.6和2.7倍;(2)改变反应产物特性。在高浓度阳离子的影响下,反应产物可由原先的可溶性葡聚糖改变为不溶性葡聚糖[52]。Fukushima等注意到,利用变异链球菌来源的GTF酶制剂合成IG时首先会经历一个持续几分钟的滞后期,但若在反应体系中加入少量外源性的(1→3)-α-glucan即可在不改变反应速率的情况下,显著缩短滞后时间,研究者指出,这种滞后期缩短的作用具有其特异性,只在合成含有大量α-(1→3)键的葡聚糖时有效[53]。
长久以来,大量有关不溶性葡聚糖增加口腔中致龋细菌粘附性的报道使IG被视作一类有害的微生物代谢产物,甚至有人将IG合成能力作为衡量口腔中变异链球菌致龋性的重要指标[54],尽管之后有研究认为变异链球菌在牙齿表面的粘附作用是GTF和细胞表面蛋白类组分反应的结果,并非与IG的形成有关[55],但长期对IG的负面认知,加上狭隘的加工性能依然令IG极少被人们所关注。直到近年来,借助飞速发展的研究手段,IG才得以在许多生理功能或产品应用方面有了前所未有的“零”的突破,但还存在一些问题有待解决:一、导致IG其不溶性发生的特殊结构或特定机制有必要进一步阐明;二、需要在更多领域深入发掘IG潜在的功效和应用价值,从而扩大IG的应用前景;三、通过筛选高安全性IG产生菌的方法来拓展IG的来源,进而更好的服务于可应用领域。
[1] COTE G,AHLGREN J,SMITH M.Some structural features of an insoluble α-D-glucan from a mutant strain of Leuconostoc mesenteroides NRRL B-1355[J].Journal of Industrial Microbiology and Biotechnology,1999,23(1):656-660
[2]HOZOV B,KUNIAK L,MORAVCIKOVA P,et al.Determination of water-insoluble beta-D-glucan in the whole-grain cereals and pseudocereals[J].Czech Journal of Food Sciences,2007,25(6):316
[3]JIN Y,ZHANG L,TAO Y,et al.Solution properties of a water-insoluble(1→3)-α-d-glucan isolated from Poria cocos mycelia[J].Carbohydr Polym,2004,57(2):205-209
[4]ZAHNLEY J C,SMITH M R.Insoluble Glucan Formation by Leuconostoc mesenteroides B-1355[J].Applied and environmental microbiology,1995,61(3):1120-1123
[5]GUMMADI S N,KUMAR K.Production of extracellular water insoluble β-1,3-glucan(curdlan)from Bacillus sp.SNC07[J].Biotechnology and Bioprocess Engineering,2005,10(6):546-551
[6]PAVLOSTATHIS S G,MILLER T L,WOLIN M J.Kinetics of insoluble cellulose fermentation by continuous cultures of Ruminococcus albus[J].Applied and environmental microbiology,1988,54(11):2660-2663
[7]DAVIS H M,BOYKO W J,EDWARDS J R.Structural determination of a water-insoluble glucan from Streptococcus mutans 6715 by carbon-13 nuclear magnetic resonance spectroscopy[J].Carbohydrate research,1986,152:279-282
[8]LUKONDEH T,ASHBOLT N J,ROGERS P L,et al.NMR confirmation of an alkali-insoluble glucan from Kluyveromyces marxianus cultivated on a lactose-based medium[J].World Journal of Microbiology and Biotechnology,2003,19(4):349-355
[9]TSUMORI H,KUMADA H,UMEMOTO T,et al.Purification and characterization of extracellular glucosyltransferase synthesizing water-insoluble glucan from Streptococcus rattus[J].Journal of general microbiology,1989,135(2):325-333
[10]HAMADA S,HORIKOSHI T,MINAMI T,et al.Purification and characterization of cell-associated glucosyltransferase synthesizing water-insoluble glucan from serotype c Streptococcus mutans[J]. Journal of general microbiology,1989,135(2):335-344
[11]GILMORE K,RUSSELL R,FERRETTI J.Expression of gtfS is essential for normal insoluble glucan synthesis by Streptococcus downei[J].Infection and immunity,1993,61(4):1246-1250
[12]GERMAINE G R,HARLANDER S K,LEUNG W-L S,et al.Streptococcus mutans dextransucrase:functioning of primer dextran and endogenous dextranase in water-soluble and water-insoluble glucan synthesis[J].Infection and immunity,1977,16(2):637-648
[13]CHOMA A,WIATER A,KOMANIECKA I,et al.Chemical characterization of a water insoluble(1→3)-α-d-glucan from an alkaline extract of Aspergillus wentii[J].Carbohydr Polym,2013,91(2):603-608
[14]ZEVENHUIZEN L,BARTNICKI-GARCIA S.Chemical structure of the insoluble hyphal wall glucan of Phytophthora cinnamomi[J]. Biochemistry,1969,8(4):1496-1502
[15]ANAS A,LOWMAN D W,WILLIAMS D L,et al.Alkali insoluble glucan extracted from Acremonium diospyri is a more potent immunostimulant in the Indian White Shrimp,Fenneropenaeus indicus than alkali soluble glucan[J].Aquaculture Research,2009,40(11):1320-1327
[16]TANAKA T,OI S.Structure of Water-insoluble Glucan Synthesized by β-Transglycosylase of Trichoderma longibrachiatum[J].Agricultural and biological chemistry,1984,48(9):2265-2269
[17]ZHANG L,ZHANG M,DONG J,et al.Chemical structure and chain conformation of the water-insoluble glucan isolated from Pleurotus tuber-regium[J].Biopolymers,2001,59(6):457-464
[18]ENSLEY H E,TOBIAS B,PRETUS H A,et al.NMR spectral analysis of a water-insoluble(1→3)-β-D-glucan isolated from Saccharomyces cerevisiae[J].Carbohydrate research,1994,258:307-311
[19]DAVIS H M,HINES H B,EDWARDS J R.Structural elucidation of a water-insoluble glucan produced by a cariogenic oral Streptococcus[J].Carbohydrate research,1986,156:69-77
[20]PADMANABHAN P A,KIM D-S.Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523[J].Carbohydrate research,2002,337(17):1529-1533 [21]SVIHUS B,NEWMAN C,NEWMAN R,et al.Changes in extract viscosity,amino acid content,and soluble and insoluble β-glucan and dietary fibre content of barley during different high moisture storage conditions[J].Animal feed science and technology,1997,64 (2):257-272
[22]WANG T,DENG L,LI S,et al.Structural characterization of a water-insoluble(1→3)-α-D-glucan isolated from the Penicillium chrysogenum[J].Carbohydr Polym,2007,67(1):133-137
[23]CHAKRABORTY I,MONDAL S,ROUT D,et al.A water-insoluble (1→3)-β-d-glucan from the alkaline extract of an edible mushroom Termitomyces eurhizus[J].Carbohydrate research,2006,341 (18):2990-2993
[24]MANDAL S,MAITY K K,BHUNIA S K,et al.Chemical analysis of new water-soluble(1→6)-,(1→4)-α,β-glucan and water-insoluble(1→3)-,(1→4)-β-glucan(Calocyban)from alkaline extract of an edible mushroom,Calocybe indica (Dudh Chattu)[J].Carbohydrate research,2010,345(18):2657-2663
[25]SONNENBERG A,SIETSMA J,WESSELS J.Biosynthesis of alkaliinsoluble cell-wall glucan in Schizophyllum commune protoplasts [J].Journal of General Microbiology,1982,128(11):2667-2674
[26]KAR CSONYI Š,KUNIAK L.Polysaccharides of Pleurotus ostreatus:isolation and structure of pleuran,an alkali-insoluble β-D-glucan[J].Carbohydr Polym,1994,24(2):107-111
[27]TSUMURAYA Y,MISAKI A.Structure of the water-insoluble α-D-glucan of Streptococcus salivarius HHT[J].Carbohydrate research,1979,74(1):217-225
[28]SHUKLA R,SHUKLA S,BIVOLARSKI V,et al.Structural characterization of insoluble dextran produced by Leuconostoc mesenteroides NRRL B-1149 in the presence of maltose[J].Food Technology and Biotechnology,2011,49(3):291-296
[29]MONTVILLE T J,COONEY C L,SINSKEY A J.Measurement and synthesis of insoluble and soluble dextran by Streptococcus mutans [J].Journal of dental research,1977,56(8):983-989
[30]CASSONE A,BISTONI F,CENCI E,et al.Immunopotentiation of anticancer chemotherapy by Candida albicans,other yeasts and insoluble glucan in an experimental lymphoma model[J].Sabouraudia,1982,20(2):115-125
[31]SUZUKI T,OHNO N,CHIBA N,et al.Immunopharmacological activity of the purified insoluble glucan,zymocel,in mice[J].Journal of pharmacy and pharmacology,1996,48(12):1243-1248
[32]HANS-JOACHIM G,REGINA B,HEIKE S,et al.A double-blind,randomized,placebo-controlled nutritional study using an insoluble yeastbeta-glucantoimprovetheimmunedefensesystem[J].Food and Nutrition Sciences,2012
[33]MAITY K,SAMANTA S,BHANJA S K,et al.An immunostimulating water insoluble β-glucan of an edible hybrid mushroom:Isolation and characterization[J].Fitoterapia,2013,84:15-21
[34]WOOD P J,J RGENSEN K G.Assay of(1→3)(1→4)-β-d-glucanase using the insoluble complex between cereal(1→3)(1→4)-β-d-glucan and Congo Red[J].Journal of Cereal Science,1988,7(3):295-308
[35]JI-LIN D,YING-YING Z,LIN L,et al.Effect of Oat Soluble and Insoluble β-glucan on Lipid Metabolism and Intestinal LactobacillusinHigh-fatDiet-inducedObeseMice[J].Journal of Food and Nutrition Research,2014,2(8):510-516
[36]VAIDYA B K,SINGHAL R S.Use of insoluble yeast β-glucan as a support for immobilization of Candida rugosa lipase[J].Colloids and Surfaces B:Biointerfaces,2008,61(1):101-105
[37]YU H-H,SEO S-J,HUR J-M,et al.Asarum sieboldii extracts attenuate growth,acid production,adhesion,and water-insoluble glucan synthesis of Streptococcus mutans[J].Journal of medicinal food,2006,9(4):505-509
[38]YU H-H,LEE J-S,LEE K-H,et al.Saussurea lappa inhibits the growth,acid production,adhesion,and water-insoluble glucan synthesis of Streptococcus mutans[J].Journal of ethnopharmacology,2007,111(2):413-417
[39]TAGASHIRA M,UCHIYAMA K,YOSHIMURA T,et al.Inhibition by hop bract polyphenols of cellular adherence and water-insoluble glucan synthesis of Mutans streptococci[J].Bioscience,biotechnology,and biochemistry,1997,61(2):332-335
[40]KURIHARA H,GOTO Y,AIDA M,et al.Antibacterial Activity against Cariogenic Bacteria and Inhibition of Insoluble Glucan Production by Free Fatty Acids Obtained from Dried Gloiopeltis furcata [J].Fisheries science,1999,65(1):129-132
[41]HAYASHIDA O,HASUMI K,ENDO A.Chemical and functional properties of mutastein,an inhibitor of insoluble glucan synthesis by Streptococcus sobrinus[J].Bioscience,biotechnology,and biochemistry,1997,61(4):588-591
[42]YAMAKAMI K,TSUMORI H,SAKURAI Y,et al.Sustainable inhibition efficacy of liposome-encapsulated nisin on insoluble glucanbiofilm synthesis by Streptococcus mutans[J].Pharmaceutical biology,2013,51(2):267-270
[43]WRIGHT W,THELWELL C,SVENSSON B,et al.Inhibition of catalytic and glucan-binding activities of a streptococcal GTF forming insoluble glucans[J].Caries research,2002,36(5):353-359
[44]FURIGA A,DOLS-LAFARGUE M,HEYRAUD A,et al.Effect of antiplaque compounds and mouthrinses on the activity of glucosyltransferases from Streptococcus sobrinus and insoluble glucan production[J].Oralmicrobiologyandimmunology,2008,23(5):391-400
[45]TAECHOWISAN T,SITTHIPANYA A,WANBANJOB A,et al. Streptomyces sp.ST8 extracts attenuate growth,acid production,adhesion,biofilm formation,and water-insoluble glucan synthesis of Streptococcus mutans[J].Microbial Ecology in Health and Disease,2009,21(2):78-86
[46]IMAI S,TAKEUCHI K,SHIBATA K,et al.Screening of sugars inhibitory against sucrose-dependent synthesis and adherence of insoluble glucan and acid production by Streptococcus mutans[J]. Journal of dental research,1984,63(11):1293-1297
[47]OCHIAI K,FUKUSHIMA K,SHIOTA T,et al.Characterization of monoclonal antibodies against glucosyltransferase synthesizing water-insoluble glucan from Streptococcus sobrinus B13[J].Journal of dental research,1990,69(2):477-482
[48]KOBAYASHI S,KOGA K,HAYASHIDA O,et al.Specific inhibition of insoluble glucan synthase(GTF-I)by Maillard reaction products from casein and albumins[J].Agricultural and biological chemistry,1990,54(6):1417-1424
[49]EBISU S,KATO K,KOTANI S,et al.Isolation and purification of Flavobacterium alpha-1,3-glucanase-hydrolyzing,insoluble,sticky glucan of Streptococcus mutans[J].Journal of bacteriology,1975,124 (3):1489-1501
[50]SCHACHTELE C F,STAAT R H,HARLANDER S K.Dextranases from oral bacteria:inhibition of water-insoluble glucan production and adherence to smooth surfaces by Streptococcus mutans[J].Infection and immunity,1975,12(2):309-317
[51]TSUMORI H,SHIMAMURA A,SAKURAI Y,et al.Combination of Mutanase and Dextranase Effectively Suppressed Formation of Insoluble Glucan Biofilm by Cariogenic Streptococci[M].Interface O-ral Health Science 2011.Springer.2012:215-217
[52]MUKASA H,SHIMAMURA A,TSUMORI H.Effect of salts on water-insoluble glucan formation by glucosyltransferase of Streptococcus mutans[J].Infection and immunity,1979,23(3):564-570
[53]FUKUSHIMA K,MOTODA R,IKEDA T.Effects of exogenous insoluble glucan primer on insoluble glucan synthesis by Streptococcus mutans[J].Journal of dental research,1981,60(9):1707-1712
[54]WENHAM D,DAVIES R,COLE J.Insoluble glucan synthesis by mutansucrase as a determinant of the cariogenicity of Streptococcus mutans[J].Journal of general microbiology,1981,127(2):407-415
[55]FUKUSHIMA K,TAKADA K,MOTODA R,et al.Independence of water-insoluble glucan synthesis and adherence of Streptococcus mutans to smooth surfaces[J].FEBS letters,1982,149(2):299-303
Progress in the Study of Insoluble Glucan
HAN Jin1,WU Zheng-jun1,2,YAN Ming-hui2,GAO Cai-xia3,WU Shen-mao3(1.State Key Laboratory of Dairy Biotechnology,Shanghai 200436,China;2.Shanghai Engineering Research
Center of Dairy Biotechnology,Shanghai 200436,China;3.Dairy Research Institute,Bright Dairy&Foods Co.Ltd.,Shanghai 200436,China)
Insoluble glucan,a typical glucose polymer with α-(1,3)-,α-(1,6)-,β-(1,3)-or β-(1,4)-glycosidic linkage in the backbone,is insoluble in water or alkali solution and mainly biosynthesized by microbial glucosyltransferase catalysing sucrose as the substrate.In this article,the progress in the research and development of insoluble glucan resource,functionality,application and regulation was reviewed and the future perspective is also predicted.
insolubleglucan;resource;functionality;application;regulation
10.3969/j.issn.1005-6521.2016.15.049
“十二五”国家科技支撑计划课题:发酵乳制品乳酸菌菌种与发酵剂的研究与开发(2013BAD18B01);“十二五”国家863项目:优良益生菌高效筛选与应用关键技术(2011AA100901)
韩瑨(1980—),男(汉),高级工程师,硕士,研究方向:乳品科学。
2015-08-26