A37-42形成二聚体的分子模拟研究

2016-09-02 08:08刘巧菊
复旦学报(自然科学版) 2016年1期
关键词:残基氢键二聚体

刘巧菊,吴 荻

(复旦大学 生命科学学院 生理学和生物物理学系,上海 200438)



刘巧菊,吴荻

(复旦大学 生命科学学院 生理学和生物物理学系,上海 200438)

阿尔茨海默症是一种神经退行性疾病,多发病于老年人群.该疾病不但严重影响患者的健康及正常生活,还给患者家属带来极大痛苦.因此治疗该疾病成为科学界急欲攻克的难关.而治疗的基础是解析病理,大量研究表明该病患者脑内有大量纤维状A蛋白质聚集物.因此研究A蛋白质如何聚集是解析病理的关键.同时预防和阻止A蛋白质聚集也成为治疗阿尔茨海默症的一种可选方案.本文即选取A蛋白质片段,以分子动力学模拟方法,详细分析其形成稳定二聚体的完整过程.研究发现该蛋白质片段上残基侧链之间的疏水作用促使两个A单体相互靠近,其间会形成多种非稳态中间体,其结构经过不断调整最终才形成稳定的二聚体结构.该结构调整过程对形成稳定的二聚体结构非常重要.在此过程中两条肽链主链形成氢键的个数逐渐增加,同时伴随形成了新的残基侧链之间的相互作用.研究发现在二聚体形成的全过程中Ile41和Ala42均起到不可忽视的作用.Ile41由于其侧链具有疏水性且体积相对较大,可通过其疏水作用力促使两个单体相互靠近.而Ala42在后期结构调整中发挥了一定作用,稳定了二聚体的结构.该研究有助于更好地理解A蛋白质聚集特别是其形成二聚体的过程,同时也为防治A蛋白质聚集提供了一些理论依据.

阿尔茨海默症; 蛋白质聚集; 分子动力学模拟

阿尔茨海默症(Alzheimer’s Disease)是Alois Alzheimer于一个世纪以前发现并以他的名字命名的一类神经退行性疾病[1].该疾病在老年人群发病率很高,严重危害老年人的身心健康.大量研究表明该疾病患者脑内有大量A(Amyloid)蛋白质聚集形成纤维状形态[2-4].因此研究A蛋白质如何聚集对治疗阿尔茨海默症有重要意义.此外近期研究也表明A蛋白质的寡聚体(甚至是二聚体)也具有毒性[5-8].因此研究A蛋白质如何形成寡聚体同样具有重要意义.

1 方 法

1.1分子动力学模拟

本文使用NAMD分子模拟软件[35],用Charmm力场[36]及CMAP correction[37]进行模拟计算.图形显示使用VMD软件[38].A37-42的单体取自PDB文件2ONV,其序列为Gly-Gly-Val-Val-Ile-Ala.这里将其N末端与C末端分别加上Acetyl和N-Methylamide groups.先将单体放入水溶液中(TIP3P水模型),经平衡后在恒温(298K)、恒压(1atm)条件下再模拟一段时间,取其中16个不同形态的单体结构.然后将每两个单体放入水溶液中(TIP3P水模型),且两单体各非氢原子之间最短距离不小于13Å.整个模拟系统为正方体,边长均为50Å.这样总共得到8组初始的模拟系统.每个系统经能量最小化、恒温恒容、恒温恒压平衡总共约4.2ns后,再在恒温恒压下进行分子动力学模拟100ns.整个模拟过程采用PBC(Periodic Boundary Condition),用PME(Particle Mesh Ewald)来处理长距离静电作用力.模拟时间步长均为2fs,模拟温度为298K,模拟压强为1atm.

1.2数据分析

在结果分析中,我们定义CEN1为肽链A上6个Cα原子的中心位置,CEN2为肽链B上6个Cα原子的中心位置,d1为CEN1和CEN2之间的距离.我们以d1来表示两肽链主链之间的距离.同时我们定义SCi为肽链A上第i个氨基酸残基侧链上所有非氢原子的中心位置,SCj为肽链B上第j个氨基酸残基侧链上所有非氢原子的中心位置,d2为SCi和SCj之间的距离.我们以d2来表示两条肽链上每两对氨基酸残基侧链之间的距离.由于Gly的侧链上没有非氢原子,因此在计算d2时,不考虑Gly37及Gly38.通过分析该系统中16对氨基酸残基侧链之间的距离d2的分布图,我们定义了针对该系统的NSCC(Number of Side Chain Contacts)为小于7Å的d2的总数.另外我们定义d3为肽链A上Val39的Cα原子与肽链B上Ala42的Cα原子之间的距离;d4为肽链A上Ala42的Cα原子与肽链B上Val39的Cα原子之间的距离.目前文献中氢键的判断标准并不唯一(参照Berhanu等人在方法章节中的讨论[39]),本文参照Reddy等人使用的参数[40]即D(donor)、A(acceptor)原子之间的距离小于等于3.5Å并且D-H…A夹角大于等于135°.

2 结果与分析

图1是两条肽链(两个单体)A和B的6个Cα原子中心之间的距离(即d1)随时间的变化图.该图展示了在模拟初期两条肽链之间的距离时远时近,而在模拟后期该距离则小于10Å且相对稳定不变.这说明模拟后期所形成的二聚体结构相对稳定.在模拟初始阶段,尽管两条肽链有时相互靠近,其距离小于10Å,但是其结构并不稳定,很快就分开了.只有在模拟达到65ns以后,其二聚体的结构才趋于稳定.

下面我们通过分析A、B肽链上除Gly37和Gly38之外的每两个氨基酸侧链之间的距离(即d2)的分布图(图4、图5)和其中一些距离随时间的变化(图6)来说明其对A37-42形成二聚体的影响.图4是A、B肽链的主链上没有氢键形成时,每两对残基侧链d2的分布图.图中可以清楚地看到在d2小于7Å时,A链上的Val39、Val40,Ile41和B链上的Ile41有大量的相互作用.由于Ile41侧链疏水性基团相对较大,其疏水作用力非常显著.图4说明Ile41对促进A37-42形成二聚体起到重要作用.图6(a)分析了B链的Ile41分别与A链上4个疏水性残基之间的d2随时间的变化.一个有趣的现象是在约53~56ns时,Ile41-Ile41及Ala42-Ile41的d2距离相对较小,但到了模拟后期(大致从70ns开始)这两对侧链之间的距离却变大了,尤其是Ala42-Ile41,其距离甚至大于10Å.这一现象说明Ile41的突出贡献是通过与其对侧肽链残基之间的相互作用促进两条肽链相互靠近.而在两条肽链靠近后,会进行结构的调整与再平衡,进而形成稳定的二聚体结构.

图5是在A、B两条肽链的主链上有氢键形成时,每两对氨基酸残基侧链之间的d2的分布图.对比图4可以明显地看出当两肽链主链上开始有氢键形成时,有几对残基侧链之间的相互作用开始变得特别显著.这些侧链对是: Val39-Ala42、Val40-Val39、Ile41-Val40、Ile41-Ala42,和Ala42-Val39.如果我们分析这些侧链对之间的距离d2随时间的变化(图6(b)),在约65ns时,除Ala42-Val39外,其它侧链对的距离已经接近稳态结构时的距离.而Ala42-Val39则是经过一段时间的结构调整、再平衡,最终达到稳态结构的距离.综合分析图3~图5,在主链氢键未形成时,两肽链上的残基侧链已经有相互作用,尤其是Ile41在此过程中起到重要作用.这从一个侧面说明是疏水性残基侧链的相互作用促使两条肽链主链相互靠近,进而促进主链氢键的形成.

在图7中,我们选取A、B链上Val39-Ala42与Ala42-Val39两对Cα之间的距离(即d3和d4)分别作为x轴与y轴,描绘其自由能图谱.我们可以清晰地看到图中有一系列自由能值较低的点.我们按其出现在模拟过程中的时间顺序,依次将其命名为点a~h.为了便于说明,我们为每一个标注点选取一个相对应的模拟结构截图.从a点到b点,A链通过自我折叠形成氢键以及与B链形成氢键暂时稳定了结构.然而该结构只稳定了很短一段时间.之后A、B链之间距离加大,从而促进侧链之间形成新的相互作用.经过一系列的结构调整,通过c点、d点,其中在d点的模拟结构截图展示了A、B链是以平行结构方式相互靠近的.而到达e至f点时,两条肽链大体上是以交叉结构相互靠近.之后结构再次调整至g点,此时的结构已经是反平行的-sheet结构.在结构经过微调之后到达h点,此时形成的是最为稳定的二聚体结构.由此可见稳定的二聚体结构的形成过程非常复杂,先是通过残基侧链的疏水作用使两条肽链相互靠近,然后经过不断的结构调整,形成新的残基侧链之间的相互作用,从而促进两条肽链主链形成氢键的个数增加,进而形成相对稳定的二聚体结构.

3 讨 论

本文所得到的结果与已发表文献[33-34]所得结论相吻合.Nguyen和Derreumaux[34]在研究A37-42形成16聚体的过程中发现溶液中A37-42的单体比例为25%,且单体聚集和多聚体解离的过程一直在发生,聚合物结构并不稳定.本文从8个模拟体系的研究中也发现A37-42形成二聚体过程中,其以单体形式存在时间占很大比例,且大多数A37-42二聚体并不稳定,时常解聚.另外Nguyen和Derreumaux[34]在研究中也发现溶液中A37-42形成二聚体的比例居多,且反平行结构多于平行结构.而本文所示的稳定的二聚体结构正是反平行结构.Wagoner等研究人员[33]在研究A37-42形成多聚体过程中同样发现溶液中存在一定比例的单体,且A37-42可形成-sheet,但不容易形成纤维状聚集物,并从能量计算的角度分析了Ile41及Ala42对A37-42形成复杂形态寡聚体的影响.而本文则是依据模拟过程所得到的结构直观地分析了Ile41及Ala42对A37-42形成二聚体的影响.本文着重研究了每对残基侧链之间的相互作用,通过计算d2详细分析每一个氨基酸残基侧链对A37-42形成二聚体的影响,从而发现Ile41及Ala42对A37-42二聚体的形成起到的不同作用.

[1]ALZHEIMER A. Uber eine eigenartige Erkrankung der Hirnrinde.[J].AllgZschrPsychiat, 1907,64: 146-148.

[2]EISENBERG D, JUCKER M. The amyloid state of proteins in human diseases[J].Cell, 2012,148(6): 1188-1203.

[3]HAMLEY I W. The amyloid beta peptide: A chemist’s perspective. Role in Alzheimer’s and fibrillization[J].ChemRev, 2012,112(10): 5147-5192.

[4]KNOWLES T P, VENDRUSCOLO M, DOBSON C M. The amyloid state and its association with protein misfolding diseases[J].NatRevMolCellBiol, 2014,15(6): 384-396.

[5]CLEARY J P, WALSH D M, HOFMEISTER J J,etal. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function[J].NatNeurosci, 2005,8(1): 79-84.

[6]HAASS C, SELKOE D J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta peptide[J].NatRevMolCellBiol, 2007,8(2): 101-112.

[7]SHANKAR G M, LI S, MEHTA T H,etal. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory[J].NatMed, 2008,14(8): 837-842.

[8]WALSH D M, SELKOE D J. A beta oligomers-A decade of discovery[J].JNeurochem, 2007,101(5): 1172-1184.

[9]FITZPATRICK A W P, DEBELOUCHINA G T, BAYRO M J,etal. Atomic structure and hierarchical assembly of a cross-beta amyloid fibril[J].ProcNatlAcadSciUSA, 2013,110(14): 5468-5473.

[10]LU J X, QIANG W, YAU W M,etal. Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue[J].Cell, 2013,154(6): 1257-1268.

[11]LUHRS T, RITTER C, ADRIAN M,etal. 3D structure of Alzheimer’s amyloid-beta(1-42)fibrils[J].ProcNatlAcadSciUSA, 2005,102(48): 17342-17347.

[12]PARAVASTU A K, LEAPMAN R D, YAU W M,etal. Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils[J].ProcNatlAcadSciUSA, 2008,105(47): 18349-18354.

[13]PETKOVA A T, ISHII Y, BALBACH J J,etal. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR[J].ProcNatlAcadSciUSA, 2002,99(26): 16742-16747.

[14]MA B, NUSSINOV R. Simulations as analytical tools to understand protein aggregation and predict amyloid conformation[J].CurrOpinChemBiol, 2006,10(5): 445-452.

[15]MEISI G, YANG X, HELLSTRAND E,etal. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the A beta40 and A beta42 peptides[J].ProcNatlAcadSciUSA, 2014,111(26): 9384-9389.

[16]ZHANG Y, REMPEL D L, ZHANG J,etal. Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta(A beta) peptide aggregation[J].ProcNatlAcadSciUSA, 2013,110(36): 14604-14609.

[17]HOSHINO T, MAHMOOD M I, MORI K,etal. Binding and aggregation mechanism of amyloid beta-peptides onto the GM1 ganglioside-containing lipid membrane[J].JPhysChemB, 2013,117(27): 8085-8094.

[18]JANG H, CONNELLY L, ARCE F T,etal. Mechanisms for the insertion of toxic, fibril-like beta-amyloid oligomers into the membrane[J].JChemTheoryComput, 2013,9(1): 822-833.

[19]JANG H, ARCE F T, RAMACHANDRAN S,etal. Familial Alzheimer’s disease Osaka mutant(delta E22) beta-barrels suggest an explanation for the different A beta(1-40/42) preferred conformational states observed by experiment[J].JPhysChemB, 2013,117(39): 11518-11529.

[20]XIE L G, LUO Y, WEI G H. A beta(16-22) peptides can assemble into ordered beta-barrels and bilayer beta-sheets, while substitution of phenylalanine 19 by tryptophan increases the population of disordered aggregates[J].JPhysChemB, 2013,117(35): 10149-10160.

[21]HARD T, LENDEL C. Inhibition of amyloid formation[J].JMolBiol, 2012,421(4/5): 441-465.

[22]NGUYENT P, DERREUMAUX P. Understanding amyloid fibril nucleation and A beta oligomer/drug interactions from computer simulations[J].AccountsChemRes, 2014,47(2): 603-611.

[23]SIEVERS S A, KARANICOLAS J, CHANG H W,etal. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation[J].Nature, 2011,475(7354): 96-100.

[24]FANDRICH M, SCHMIDT M, GRIGORIEFF N. Recent progress in understanding Alzheimer’s beta-amyloid structures[J].TrendsBiochemSci, 2011,36(6): 338-345.

[25]GREENWALD J, RIEK R. Biology of amyloid: Structure, function, and regulation[J].Structure, 2010,18(10): 1244-1260.

[26]TYCKO R, WICKNER R B. Molecular structures of amyloid and prion fibrils: Consensus versus controversy[J].AccountsChemRes, 2013,46(7): 1487-1496.

[27]NELSON R, SAWAYA M R, BALBIRNIE M,etal. Structure of the cross-beta spine of amyloid-like fibrils[J].Nature, 2005,435(7043): 773-778.

[28]COLLETIER J P, LAGANOWSKY A, LANDAU M,etal. Molecular basis for amyloid-beta polymorphism[J].ProcNatlAcadSciUSA, 2011,108(41): 16938-16943.

[29]SAWAYA M R, SAMBASHIVAN S, NELSON R,etal. Atomic structures of amyloid cross-beta spines reveal varied steric zippers[J].Nature, 2007,447(7143): 453-457.

[30]CHANG L K, ZHAO J H, LIU H L,etal. Molecular dynamics simulations to investigate the structural stability and aggregation behavior of the GGVVIA oligomers derived from amyloid beta peptide[J].JBiomolStructDyn, 2009,26(6): 731-740.

[31]CHANG L K, ZHAO J H, LIU H L,etal. The importance of steric zipper on the aggregation of the MVGGVV peptide derived from the amyloid beta peptide[J].JBiomolStructDyn, 2010,28(1): 39-50.

[32]CHEN Y, HE Y J, WU M Y,etal. Insight into the stability of cross-beta amyloid fibril from molecular dynamics simulation[J].Biopolymers, 2010,93(6): 578-586.

[33]WAGONER V A, CHEON M, CHANG I,etal. Impact of sequence on the molecular assembly of short amyloid peptides[J].Proteins, 2014,82(7): 1469-1483.

[34]NGUYEN P H, DERREUMAUX P. Conformational ensemble and polymorphism of the all-atom Alzheimer’s A beta(37-42) amyloid peptide oligomers[J].JPhysChemB, 2013,117(19): 5831-5840.

[35]PHILLIPS J C, BRAUN R, WANG W,etal. Scalable molecular dynamics with NAMD[J].JComputChem, 2005,26(16): 1781-1802.

[36]MACKERELL A D, BASHFORD D, BELLOTT M,etal. All-atom empirical potential for molecular modeling and dynamics studies of proteins[J].JPhysChemB, 1998,102(18): 3586-3616.

[37]MACKERELL A D, FEIG M, BROOKS C L. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations[J].JComputChem, 2004,25(11): 1400-1415.

[38]HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J].JMolGraph, 1996,14(1): 33-38.

[39]BERHANU W M, MASUNOV A E. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer[J].BiophysChem, 2010,149: 12-21.

[40]REDDY G, STRAUB J E, THIRUMALAI D. Dynamics of locking of peptides onto growing amyloid fibrils[J].ProcNatlAcadSciUSA, 2009,106(29): 11948-11953.

LIU Qiaoju, WU Di

(Department of Physiology and Biophysics, School of Life Sciences,FudanUniversity,Shanghai200438,China)

Alzheimer’s disease(AD) is a neurodegenerative disease usually affecting the elderly. AD can seriously affect the normal life of the patients and bring pains to their families. Therefore, scientists have tried hard to find out the solutions that can cure AD. Understanding how the disease is developed is essential for the treatment of AD. Researchers have found that the fibrils made of the amyloid(A) peptides are deposited in the brain of the AD patients. Therefore, it is necessary to study the amyloidpeptide aggregation process. Meanwhile, inhibiting the Aaggregation process is suggested as one of the possible ways for the treatment of AD. In this paper, we study the dimerization process of A37-42by the molecular dynamics simulations. We find that the two monomers approach each other due to the favorable hydrophobic interactions between their side chains. The dimerization process undergoes several intermediate states, through which the two chains adjust their interactions and conformations continuously. With the increasing number of the interchain hydrogen bonds and the newly formed side chain interactions, the dimer structure is stabilized finally. We also find that the contributions of Ile41 and Ala42 are nonnegligible in this dimerization process. Ile41 helps bring the two monomers close to each other with the aid of its hydrophobic side chain, and Ala42 contributes to the optimization of conformations in the late stage of the dimerization process. This study can help people understand more about the Aaggregation(especially the dimerization) process and may also provide some clues for the inhibition of the Aaggregation.

Alzheimer’s disease; protein aggregation; molecular dynamics simulation

0427-7104(2016)01-0119-09

2015-03-24

上海市生物物理重点学科建设项目(B111)

刘巧菊(1989—),女,硕士研究生;吴荻,女,副教授,通讯联系人,E-mail: diwu@fudan.edu.cn.

Q 615

A

猜你喜欢
残基氢键二聚体
人分泌型磷脂酶A2-IIA的功能性动力学特征研究*
基于各向异性网络模型研究δ阿片受体的动力学与关键残基*
Streptomyces sp.DJ菌株产生的角蛋白酶的序列分析
盐酸四环素中可交换氢和氢键的核磁共振波谱研究
降钙素原、D-二聚体联合SOFA评分对脓毒症预后的评估价值
VIDAS 30荧光分析仪检测血浆D-二聚体的性能验证
“残基片段和排列组合法”在书写限制条件的同分异构体中的应用
不孕症女性IVF助孕前后凝血四项及D二聚体变化与妊娠结局
D-二聚体及纤维蛋白原降解物水平与急性ST段抬高型心肌梗死相关动脉自发再通的相关性研究
细说氢键